期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multigraphic Degree Sequences and Hamiltonian-connected Line Graphs
1
作者 Ren-sen MA Ai-mei YU +1 位作者 Ke-ke WANG Hong-Jian LAI 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2021年第4期800-806,共7页
Let G be a multigraph.Suppose that e=u1v1 and e′=u2v2 are two edges of G.If e≠e′,then G(e,e′)is the graph obtained from G by replacing e=u1v1 with a path u1vev1 and by replacing e′=u2v2 with a path u2ve′v2,where... Let G be a multigraph.Suppose that e=u1v1 and e′=u2v2 are two edges of G.If e≠e′,then G(e,e′)is the graph obtained from G by replacing e=u1v1 with a path u1vev1 and by replacing e′=u2v2 with a path u2ve′v2,where ve,ve′are two new vertices not in V(G).If e=e′,then G(e,e′),also denoted by G(e),is obtained from G by replacing e=u1v1 with a path u1vev1.A graph G is strongly spanning trailable if for any e,e′∈E(G),G(e,e′)has a spanning(ve,ve′)-trail.The design of n processor network with given number of connections from each processor and with a desirable strength of the network can be modelled as a degree sequence realization problem with certain desirable graphical properties.A sequence d=(d1,d2,⋯,dn)is multigraphic if there is a multigraph G with degree sequence d,and such a graph G is called a realization of d.A multigraphic degree sequence d is strongly spanning trailable if d has a realization G which is a strongly spanning trailable graph,and d is line-hamiltonian-connected if d has a realization G such that the line graph of G is hamiltonian-connected.In this paper,we prove that a nonincreasing multigraphic sequence d=(d1,d2)⋯,dn)is strongly spanning trailable if and only if either n=1 and d1=0 or n≥2 and dn≥3.Applying this result,we prove that for a nonincreasing multigraphic sequence d=(d1,d2,⋯,dn),if n≥2 and dn≥3,then d is line-hamiltonian-connected. 展开更多
关键词 strongly spanning trailable graphs multigraphic degree sequence hamiltonian-connected graphs line graph
原文传递
C_2(4,k)中的强支撑可迹图
2
作者 余爱梅 马仁森 +1 位作者 王可可 孔将旭 《数学年刊(A辑)》 CSCD 北大核心 2018年第1期53-62,共10页
设2≤h≤3,l>0,k≥0是整数,C_h(l,k)是由h-边连通简单图组成的集合,图G∈C_h(l,k)当且仅当对图G的任意一个二边割或三边割X,图G-X的每个分支都至少有︱V(G)-k︱/l个点.设e=u_1v_1和e'=u_2v_2是图G的两条边.若e≠e',G(e,e... 设2≤h≤3,l>0,k≥0是整数,C_h(l,k)是由h-边连通简单图组成的集合,图G∈C_h(l,k)当且仅当对图G的任意一个二边割或三边割X,图G-X的每个分支都至少有︱V(G)-k︱/l个点.设e=u_1v_1和e'=u_2v_2是图G的两条边.若e≠e',G(e,e')是将图G中的边e=u_1v_1和e'=u_2v_2分别用路u_1v_ev_1和u_2v_e'v_2替换得到的图(其中,v_e,v_e'是不在V(G)中的两个新的点).若e=e',G(e,e')是将图G中的边e=u_1v_1用路u_1v_ev_1替换得到的图,也记作G(e).若对任意的e,e'∈E(G),G(e,e')都有支撑(v_e,v_e')迹,则称图G是强支撑可迹的.作者证明了,若图G∈C_2(4,k)且|V(G)|>5k,则要么图G是强支撑可迹图,要么存在e,e'∈E(G),使得G(e,e')可以收缩成一个有限图类F中的图.当k=4时,F被完全确定了. 展开更多
关键词 强支撑可迹图 可折叠图 简化图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部