Implicit large-eddy simulation of an over-expanded screeching rectangular jet is performed with a seventh-order finite difference scheme.Good agreement is found between the predicted flow-and acoustic fields with the ...Implicit large-eddy simulation of an over-expanded screeching rectangular jet is performed with a seventh-order finite difference scheme.Good agreement is found between the predicted flow-and acoustic fields with the experimental observations.Fourier decomposition,phase-averaging analysis and Spectral Proper Orthogonal Decomposition(SPOD)are used to investigate the origin of the screech,the shock leakage during the shear-layer flapping,and the distinguishing fluctuating characteristics in the minor-and major-axis plane of the rectangular jet.It finds that the screech is radiated from the end of the forth shock cell,where the interaction of the shock waves with the shear layer causes periodic leakages of shock-wave tips in the minor-axis plane,resulting in the generation of intense acoustic waves in the surrounding air.An obvious flapping mode at the same frequency of the screech is captured in the minor-axis plane and dominates the dynamic motions of the rectangular jet.The SPOD modes of pressure and velocity fluctuations at the screech frequency help to reveal the relationship between the screech generation and the coherent structures.展开更多
The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocit...The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocity signals in the turbulent boundary layer were measured by HWA. The drag reduction rate of 16.7% is obtained comparable to that of the open-loop control and saves 75% of the input energy at the asynchronous 100 V/160 Hz control case, which reflects the advantages of the closed-loop control. The experimental findings indicate that the intensity increases in the near-wall region.The perturbation of the PZT vibrators on the skewness factor is concentrated in the region y+< 60. The generation of highspeed fluids is depressed and the downward effect of high-speed fluids weakens. The alteration of energy distribution and the discernible impact of modulation between structures of varying scales are observed. The correlation coefficient exhibits a strong positive correlation, which indicates that the large-scale structures produce modulation effect on small-scale ones.The occurrence of burst events is effectively suppressed. The disturbance has the characteristics of stable periodicity,positive and negative symmetry, low intermittency, and high pulsation strength. The conditional phase waveform shows that the fluctuation amplitude increases, indicating amplitude modulation effects on coherent structures.展开更多
This research comprehensively investigates the flow and thermal characteristics of a pulsating impinging jet over a dimpled surface.It analyzes the impact of key parameters(e.g.,inlet velocity pulsation functions,puls...This research comprehensively investigates the flow and thermal characteristics of a pulsating impinging jet over a dimpled surface.It analyzes the impact of key parameters(e.g.,inlet velocity pulsation functions,pulsation frequency,amplitude,dimple pitch,dimple depth,Reynolds number)on flow patterns and heat transfer.Validated computational fluid dynamics and the Re-normalization group turbulence model are employed to accurately simulate complex turbulent flow behavior.Local and average heat transfer coefficients are calculated and compared to steady impingement cases,revealing the potential benefits of pulsation for heat transfer enhancement.The study also examines how pulsation-induced flow modulation and thermal mixing affect heat transfer mechanisms.Results indicate that combining fluctuating flow with a dimpled surface can improve heat transfer rates.In summary,increasing pulsation amplitude consistently enhances heat transfer,while the effect of frequency varies between impinging and wall jet zones.展开更多
By using the spark plasma sintering process, Ti2AlC/TiAlcomposite with the addition of Niobium (Nb) was prepared in-situ and the microstructure of Ti2AlC/TiAl (Nb) composite was investigated by means of transmissi...By using the spark plasma sintering process, Ti2AlC/TiAlcomposite with the addition of Niobium (Nb) was prepared in-situ and the microstructure of Ti2AlC/TiAl (Nb) composite was investigated by means of transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). The results indicate that new-formed Ti2AIC particles disperse with a high degree of uniformity and well combine with the matrix. In the area of phase interface the d-spaces of Ti2AlC (100) and TiAI (110) were measured as 0.2648 nm and 0.2991 nm,respectively. The atom arrangement beside the interface was only partly corresponding, existing in semicoherent state. On the contrary, in the area of grain interface the d-spaces of TiAl (100) and TiAl (110) were measured as 0.2462 nm and 0.2631 nm,respectively and the atom arrangement beside the interface was almost corresponding, existing in coherent state.展开更多
The structural deformation of NO2 group induced by an intense femtosecond laser field of liquid nitromethane(NM)molecule is detected by time-and frequency-resolved coherent anti-Stokes Raman spectroscopy(CARS) tec...The structural deformation of NO2 group induced by an intense femtosecond laser field of liquid nitromethane(NM)molecule is detected by time-and frequency-resolved coherent anti-Stokes Raman spectroscopy(CARS) technique with the intense pump laser. Here, we present the mechanism of molecular alignment and deformation. The CARS spectra and its FFT spectra of liquid NM show that the NO2 torsional mode couples with the CN symmetric stretching mode and that the NO2 group undergoes ultrafast structural deformation with a relaxation time of 195 fs. The frequency of the NO2 torsional mode in liquid NM(50.8±0.3 cm^-1) at room temperature is found. Our results prove the structural deformation of two groups in liquid NM molecule occur simultaneously in the intense laser field.展开更多
We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by ...We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.展开更多
The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in...The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer.展开更多
An experimental system for forming a rotating paraboloid shaped shallow water with a free surface was conducted to study coherent vortex structures in a differentially rotating quasi two dimensional zonal flow.Flow...An experimental system for forming a rotating paraboloid shaped shallow water with a free surface was conducted to study coherent vortex structures in a differentially rotating quasi two dimensional zonal flow.Flow visualization and laser light scattering techniques were used to obtain the information of spatial flow patterns.Experimental results show that the coexistence of Coriolis effect and strong shear in latitudinal zones may lead to formation of coherent vortices.Power spectra analysis and photographs which were taken in a reference frame rotating with the observed vortices also justified the emergence,drift and evolution of persistent vortices on the large scale.Locked vortex state manifests the cyclone and anticyclone asymmetry.展开更多
The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the ...The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the turbulent coherent structure in the channel flow. Th is method contains three dimensional coupling difference scheme with high accur acy and high resolution, and the high order time splitting methods. Compared with the general spectral method, the method can be used to research turbule nt coherent structure under more general boundary conditions and in flow domains . In this paper, the generation and evolution of the turbulent coherent structur es ind uced by wall pulse in the channel flow are simulated, and the basic characterist ics and rules of the turbulent coherent structure are shown. Computational r esults indicate that a wall negative pulse is more convenient than the resonant three wave model.展开更多
It is shown that for laser technologies it was necessary to create a new branch of physics: Relaxed Optics (synthesis of methods of the physical optics, quantum electronics, physical chemistry, physics of irreversible...It is shown that for laser technologies it was necessary to create a new branch of physics: Relaxed Optics (synthesis of methods of the physical optics, quantum electronics, physical chemistry, physics of irreversible phenomena in unitary system). It is allowed to explain complex chain processes of interaction light and matter. Possible applications of Relaxed Optical methods for the modeling of the laser-induced processes phenomena, including laser implantation (surface and subsurface processes), laser-induced optical breakdown (volume processes) and laser annealing of radiation and other defects in solid, are discussed. Perspectives of using these methods for the creation of new laser technologies, including creation new types of optoelectronic devices (heterostructures, diffraction lattices, etc.), resolution the problems of metallurgy, material science, painting, architecture and a building, are analyzed.展开更多
Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate...Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate the nanoparticle general dynamic equa- tion. An incompressible fluid containing particles of 1 nm in diameter is projected into a particle-free ambient. The results show that the coherent structures dominate the evolution of the nanoparticle number intensity, diameter and polydispersity distributions as the jet develops. In addition, the coherent structures act to increase the diffusion of particles, and the vortex rolling-up makes the particles distributing more irregularly while the vortex pairing causes particle distributions to become uniform. As the jet travels downstream, the time-averaged particle number concentration becomes lower in the jet core and higher in the outskirts, whereas the time- averaged particle mass over the entire flow field maintains unaltered, and the time-averaged particle diameter and geometric standard deviations grow and reach their maximum on the interface of the jet region and the ambient.展开更多
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-laye...This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.展开更多
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number ...Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number based on momentum thickness is Reo = 2 460. The in- stantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid, which is flanked on either side by high- speed ones. Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases, and the main vortex characteristic in different wall-normal re- gions can be reflected by comparing the proportion of ejec- tion and its contribution to Reynolds stress with that of sweep event. The pre-multiplied power spectra and two-point cor- relations indicate the presence of large-scale motions in the boundary layer, which are consistent with what have been termed very large scale motions (VLSMs). The three dimen-sional spatial correlations of three components of veloc- ity further indicate that the elongated low-speed and high- speed regions will be accompanied by a counter-rotating roll modes, as the statistical imprint of hairpin packet structures, all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).展开更多
After the passage of a cold front, spring in northern China, the outbreak of strong wind is often accompanied by dust emissions. Through analyses of data in the atmospheric boundary layer during a typical case, it is ...After the passage of a cold front, spring in northern China, the outbreak of strong wind is often accompanied by dust emissions. Through analyses of data in the atmospheric boundary layer during a typical case, it is revealed there are rather regular gust wave packets superimposed on the basic strong wind flow. The gust-wind wave packets have a period equal to around 3 6 rains and possess coherent structure. As the vertical transport of momentum is decomposed into separate parts by (a) basic flow, (b) gust-wind, and (c) turbulence, they are all in a downwards direction at the lower levels of the atmospheric boundary layer during strong wind periods. However, (a) is the largest, while (b) and (c) are comparable. All these are very different from the case of normal weather. Besides, the friction velocity at the ground surface is also much larger than that of normal weather and should be corrected by taking the contributions of the basic flow and gust-wind into account.The strong basic flow with descending motion is very favorable for soil erosion and sand/dust emissions, but suppresses the entrainment of dust particles by keeping them within the bottom levels of the atmospheric boundary layer. Owing to the coherent structure of gust-wind, dust particles can effectively overcome the systematic descending air motion and penetrate into the middle and upper levels of the atmospheric boundary layer, and then propagate further and diffuse into the troposphere where ascending air motion prevails.展开更多
The velocity profile,turbulence intensity profile,streaky structure and bursting frequency in turbulent boundary layers over a flat plate with compliant coatings were investigated by Laser Doppler Anemometry and condi...The velocity profile,turbulence intensity profile,streaky structure and bursting frequency in turbulent boundary layers over a flat plate with compliant coatings were investigated by Laser Doppler Anemometry and condi- tional sampling techniques.This experiment led to the conclusions that in boundary layer flows on a compliant wall,as compared with that on a rigid wall,the log law region was extended further away from the wall,and that the maximum value of each turbulence intensity profile in the near wall region was reduced and the bursting frequency obviously decreased with the compliant coatings.One point worthy of notice was that the above results were very much like those of polymer drag reduction experiments.展开更多
A large eddy simulation (LES) is performed for two subsonic jets with a Reynolds number of , which have different core temperatures, i.e., the cold and hot jet. The far-field overall sound pressure levels (OASPL) and ...A large eddy simulation (LES) is performed for two subsonic jets with a Reynolds number of , which have different core temperatures, i.e., the cold and hot jet. The far-field overall sound pressure levels (OASPL) and noise spectra are well validated against previous experimental results. It is found that the OASPL is raised by heating at shallow angles. The most energetic coherent structures are extracted with specified frequencies using the filter based on the frequency domain variant of the snapshot method of proper orthogonal decomposition (POD). The modes have high coherence of near-field pressure for both jets, while the coherence of modes is enhanced greatly by heating. Based on the coherent structures, spatial wavepackets are educed and the characteristics of growth, saturation and decay are analyzed and compared between the two jets in detail. The results show that heating would enhance the linear growth rate for high frequency components, and nonlinear growth rates for low frequency components in general, which are responsible for higher OASPL in the hot jet. The far-field sound generated by wavepackets is computed using the Kirchhoff extrapolation, which matches well with that of LES at shallow angles. This indicates that the wavepackets associated with coherent structures are dominant sound sources in forced transitional turbulent jets. Additionally, the present POD method is proven to be a robust tool to extract the salient features of the wavepackets in turbulent flows.展开更多
This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous ba...This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons.展开更多
Wavelet analysis is applied to the results obtained by the direct numerical simulation of a three-dimensional (3D) mixing layer in order to investigate coherent structures in dimension of scale. First, 3D orthonormal ...Wavelet analysis is applied to the results obtained by the direct numerical simulation of a three-dimensional (3D) mixing layer in order to investigate coherent structures in dimension of scale. First, 3D orthonormal wavelet bases are constructed, and the corresponding decomposition algorithm is developed. Then the Navier-Stokes equations are transformed into the wavelet space and the architecture for multi-scale analysis is established. From this architecture, the coarse field images in different scales are obtained and some local statistical quantities are calculated. The results show that, with the development of a mixing layer, the energy spectrum densities for different wavenumbers increase and the energy is transferred from the average flow to vortex structures in different scales. Due to the non-linear interactions between different scales, cascade processes of energy are very complex. Because vortices always roll and pair at special areas, for a definite scale, the energy is obtained from other scales at some areas while it is transferred to other scales at other areas. In addition, energy dissipation and transfer always occur where an intense interaction between vortices exists.展开更多
When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully develope...When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.展开更多
A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian me...A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian method was adopted to simulate the particle motion based on one-way coupling. It is found that the turbulent intensity profiles attain self-similar status in the jet downstream regions. At the Stokes number of 1, particles are concentrated largely in the outer boundaries of the large-scale vortex structures with the most uneven distribution and the widest dispersion in the lateral direction. Particles at the much smaller Stokes numbers are distributed evenly in the flow field, and the lateral dispersion is also considerable. Distribution of particles at much larger Stokes numbers is more uniform and the lateral dispersion becomes small. In addition, the inflow conditions have different effects on the particle dispersion. The direct numerical simulation (DNS) results accord with the previous experiments and numerical studies.展开更多
基金support of the National Natural Science Foundation of China(No.12372221)is acknowledged。
文摘Implicit large-eddy simulation of an over-expanded screeching rectangular jet is performed with a seventh-order finite difference scheme.Good agreement is found between the predicted flow-and acoustic fields with the experimental observations.Fourier decomposition,phase-averaging analysis and Spectral Proper Orthogonal Decomposition(SPOD)are used to investigate the origin of the screech,the shock leakage during the shear-layer flapping,and the distinguishing fluctuating characteristics in the minor-and major-axis plane of the rectangular jet.It finds that the screech is radiated from the end of the forth shock cell,where the interaction of the shock waves with the shear layer causes periodic leakages of shock-wave tips in the minor-axis plane,resulting in the generation of intense acoustic waves in the surrounding air.An obvious flapping mode at the same frequency of the screech is captured in the minor-axis plane and dominates the dynamic motions of the rectangular jet.The SPOD modes of pressure and velocity fluctuations at the screech frequency help to reveal the relationship between the screech generation and the coherent structures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12202309,1233000165,12172242,and 12272265)Science and Technology Program of Gansu Province of China(Grant No.22JR5RA304)Tianjin Research Innovation for Postgraduate Students(Grant No.22KJ049)。
文摘The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocity signals in the turbulent boundary layer were measured by HWA. The drag reduction rate of 16.7% is obtained comparable to that of the open-loop control and saves 75% of the input energy at the asynchronous 100 V/160 Hz control case, which reflects the advantages of the closed-loop control. The experimental findings indicate that the intensity increases in the near-wall region.The perturbation of the PZT vibrators on the skewness factor is concentrated in the region y+< 60. The generation of highspeed fluids is depressed and the downward effect of high-speed fluids weakens. The alteration of energy distribution and the discernible impact of modulation between structures of varying scales are observed. The correlation coefficient exhibits a strong positive correlation, which indicates that the large-scale structures produce modulation effect on small-scale ones.The occurrence of burst events is effectively suppressed. The disturbance has the characteristics of stable periodicity,positive and negative symmetry, low intermittency, and high pulsation strength. The conditional phase waveform shows that the fluctuation amplitude increases, indicating amplitude modulation effects on coherent structures.
文摘This research comprehensively investigates the flow and thermal characteristics of a pulsating impinging jet over a dimpled surface.It analyzes the impact of key parameters(e.g.,inlet velocity pulsation functions,pulsation frequency,amplitude,dimple pitch,dimple depth,Reynolds number)on flow patterns and heat transfer.Validated computational fluid dynamics and the Re-normalization group turbulence model are employed to accurately simulate complex turbulent flow behavior.Local and average heat transfer coefficients are calculated and compared to steady impingement cases,revealing the potential benefits of pulsation for heat transfer enhancement.The study also examines how pulsation-induced flow modulation and thermal mixing affect heat transfer mechanisms.Results indicate that combining fluctuating flow with a dimpled surface can improve heat transfer rates.In summary,increasing pulsation amplitude consistently enhances heat transfer,while the effect of frequency varies between impinging and wall jet zones.
基金Funded by the Shandong Provincial Natural Science Foundation (No.22003F02)
文摘By using the spark plasma sintering process, Ti2AlC/TiAlcomposite with the addition of Niobium (Nb) was prepared in-situ and the microstructure of Ti2AlC/TiAl (Nb) composite was investigated by means of transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). The results indicate that new-formed Ti2AIC particles disperse with a high degree of uniformity and well combine with the matrix. In the area of phase interface the d-spaces of Ti2AlC (100) and TiAI (110) were measured as 0.2648 nm and 0.2991 nm,respectively. The atom arrangement beside the interface was only partly corresponding, existing in semicoherent state. On the contrary, in the area of grain interface the d-spaces of TiAl (100) and TiAl (110) were measured as 0.2462 nm and 0.2631 nm,respectively and the atom arrangement beside the interface was almost corresponding, existing in coherent state.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21673211 and 21203047)the Foundation of Heilongjiang Bayi Agricultural University,China(Grant No.XZR2014-16)the Science Challenging Program of China(Grant No.JCKY2016212A501)
文摘The structural deformation of NO2 group induced by an intense femtosecond laser field of liquid nitromethane(NM)molecule is detected by time-and frequency-resolved coherent anti-Stokes Raman spectroscopy(CARS) technique with the intense pump laser. Here, we present the mechanism of molecular alignment and deformation. The CARS spectra and its FFT spectra of liquid NM show that the NO2 torsional mode couples with the CN symmetric stretching mode and that the NO2 group undergoes ultrafast structural deformation with a relaxation time of 195 fs. The frequency of the NO2 torsional mode in liquid NM(50.8±0.3 cm^-1) at room temperature is found. Our results prove the structural deformation of two groups in liquid NM molecule occur simultaneously in the intense laser field.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant Nos.A2022201039 and F2019201446)the MultiYear Research Grant of University of Macao,China(Grant No.MYRG2020-00082-IAPME)+2 种基金the Science and Technology Development Fund from Macao SAR(FDCT),China(Grant No.0062/2020/AMJ)the Advanced Talents Incubation Program of the Hebei University(Grant No.8012605)the National Natural Science Foundation of China(Grant Nos.11204062,61774053,and 11674273)。
文摘We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.
基金Supported by the National Natural Science Foundation of China(10772082)~~
文摘The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer.
文摘An experimental system for forming a rotating paraboloid shaped shallow water with a free surface was conducted to study coherent vortex structures in a differentially rotating quasi two dimensional zonal flow.Flow visualization and laser light scattering techniques were used to obtain the information of spatial flow patterns.Experimental results show that the coexistence of Coriolis effect and strong shear in latitudinal zones may lead to formation of coherent vortices.Power spectra analysis and photographs which were taken in a reference frame rotating with the observed vortices also justified the emergence,drift and evolution of persistent vortices on the large scale.Locked vortex state manifests the cyclone and anticyclone asymmetry.
文摘The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the turbulent coherent structure in the channel flow. Th is method contains three dimensional coupling difference scheme with high accur acy and high resolution, and the high order time splitting methods. Compared with the general spectral method, the method can be used to research turbule nt coherent structure under more general boundary conditions and in flow domains . In this paper, the generation and evolution of the turbulent coherent structur es ind uced by wall pulse in the channel flow are simulated, and the basic characterist ics and rules of the turbulent coherent structure are shown. Computational r esults indicate that a wall negative pulse is more convenient than the resonant three wave model.
文摘It is shown that for laser technologies it was necessary to create a new branch of physics: Relaxed Optics (synthesis of methods of the physical optics, quantum electronics, physical chemistry, physics of irreversible phenomena in unitary system). It is allowed to explain complex chain processes of interaction light and matter. Possible applications of Relaxed Optical methods for the modeling of the laser-induced processes phenomena, including laser implantation (surface and subsurface processes), laser-induced optical breakdown (volume processes) and laser annealing of radiation and other defects in solid, are discussed. Perspectives of using these methods for the creation of new laser technologies, including creation new types of optoelectronic devices (heterostructures, diffraction lattices, etc.), resolution the problems of metallurgy, material science, painting, architecture and a building, are analyzed.
基金The project was supported by the National Natural Science Foundation of China (10372090)the Doctoral Program of Higher Education of China (20030335001)
文摘Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate the nanoparticle general dynamic equa- tion. An incompressible fluid containing particles of 1 nm in diameter is projected into a particle-free ambient. The results show that the coherent structures dominate the evolution of the nanoparticle number intensity, diameter and polydispersity distributions as the jet develops. In addition, the coherent structures act to increase the diffusion of particles, and the vortex rolling-up makes the particles distributing more irregularly while the vortex pairing causes particle distributions to become uniform. As the jet travels downstream, the time-averaged particle number concentration becomes lower in the jet core and higher in the outskirts, whereas the time- averaged particle mass over the entire flow field maintains unaltered, and the time-averaged particle diameter and geometric standard deviations grow and reach their maximum on the interface of the jet region and the ambient.
基金supported by the National Basic Research Program of China(2009CB724100)the National Natural Science Foundation of China(10632050,10872205,11072248).
文摘This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.
基金supported by the National Natural Science Foundation of China (10832001 and 10872145)the State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences
文摘Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number based on momentum thickness is Reo = 2 460. The in- stantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid, which is flanked on either side by high- speed ones. Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases, and the main vortex characteristic in different wall-normal re- gions can be reflected by comparing the proportion of ejec- tion and its contribution to Reynolds stress with that of sweep event. The pre-multiplied power spectra and two-point cor- relations indicate the presence of large-scale motions in the boundary layer, which are consistent with what have been termed very large scale motions (VLSMs). The three dimen-sional spatial correlations of three components of veloc- ity further indicate that the elongated low-speed and high- speed regions will be accompanied by a counter-rotating roll modes, as the statistical imprint of hairpin packet structures, all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).
基金funded by the National Natural Science Foundation of China under Grant Nos.40830103, 40775018, 40875008 and 40605006the science plan in the Chinese Academy of Sciences (KZCX2-YW210)+2 种基金Chinese Academy of Sciences under Grant No.YZ200708through special finance from the China Meteorological Administration(GYHY200706034)the Urban Meteorological Research Foundation (UMRF200810)
文摘After the passage of a cold front, spring in northern China, the outbreak of strong wind is often accompanied by dust emissions. Through analyses of data in the atmospheric boundary layer during a typical case, it is revealed there are rather regular gust wave packets superimposed on the basic strong wind flow. The gust-wind wave packets have a period equal to around 3 6 rains and possess coherent structure. As the vertical transport of momentum is decomposed into separate parts by (a) basic flow, (b) gust-wind, and (c) turbulence, they are all in a downwards direction at the lower levels of the atmospheric boundary layer during strong wind periods. However, (a) is the largest, while (b) and (c) are comparable. All these are very different from the case of normal weather. Besides, the friction velocity at the ground surface is also much larger than that of normal weather and should be corrected by taking the contributions of the basic flow and gust-wind into account.The strong basic flow with descending motion is very favorable for soil erosion and sand/dust emissions, but suppresses the entrainment of dust particles by keeping them within the bottom levels of the atmospheric boundary layer. Owing to the coherent structure of gust-wind, dust particles can effectively overcome the systematic descending air motion and penetrate into the middle and upper levels of the atmospheric boundary layer, and then propagate further and diffuse into the troposphere where ascending air motion prevails.
基金The project is supported by the National Natural Science Foundation of China
文摘The velocity profile,turbulence intensity profile,streaky structure and bursting frequency in turbulent boundary layers over a flat plate with compliant coatings were investigated by Laser Doppler Anemometry and condi- tional sampling techniques.This experiment led to the conclusions that in boundary layer flows on a compliant wall,as compared with that on a rigid wall,the log law region was extended further away from the wall,and that the maximum value of each turbulence intensity profile in the near wall region was reduced and the bursting frequency obviously decreased with the compliant coatings.One point worthy of notice was that the above results were very much like those of polymer drag reduction experiments.
基金supported by the National Natural Science Foundation of China (Grants 11232011, 11402262, 11572314, 11621202)the Fundamental Research Funds for the Central Universities
文摘A large eddy simulation (LES) is performed for two subsonic jets with a Reynolds number of , which have different core temperatures, i.e., the cold and hot jet. The far-field overall sound pressure levels (OASPL) and noise spectra are well validated against previous experimental results. It is found that the OASPL is raised by heating at shallow angles. The most energetic coherent structures are extracted with specified frequencies using the filter based on the frequency domain variant of the snapshot method of proper orthogonal decomposition (POD). The modes have high coherence of near-field pressure for both jets, while the coherence of modes is enhanced greatly by heating. Based on the coherent structures, spatial wavepackets are educed and the characteristics of growth, saturation and decay are analyzed and compared between the two jets in detail. The results show that heating would enhance the linear growth rate for high frequency components, and nonlinear growth rates for low frequency components in general, which are responsible for higher OASPL in the hot jet. The far-field sound generated by wavepackets is computed using the Kirchhoff extrapolation, which matches well with that of LES at shallow angles. This indicates that the wavepackets associated with coherent structures are dominant sound sources in forced transitional turbulent jets. Additionally, the present POD method is proven to be a robust tool to extract the salient features of the wavepackets in turbulent flows.
文摘This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons.
基金The project supported by the Research Fund for the Doctoral Program of Higher Educationthe National Natural Science Foundation for Outstanding Youth of China (19925210)
文摘Wavelet analysis is applied to the results obtained by the direct numerical simulation of a three-dimensional (3D) mixing layer in order to investigate coherent structures in dimension of scale. First, 3D orthonormal wavelet bases are constructed, and the corresponding decomposition algorithm is developed. Then the Navier-Stokes equations are transformed into the wavelet space and the architecture for multi-scale analysis is established. From this architecture, the coarse field images in different scales are obtained and some local statistical quantities are calculated. The results show that, with the development of a mixing layer, the energy spectrum densities for different wavenumbers increase and the energy is transferred from the average flow to vortex structures in different scales. Due to the non-linear interactions between different scales, cascade processes of energy are very complex. Because vortices always roll and pair at special areas, for a definite scale, the energy is obtained from other scales at some areas while it is transferred to other scales at other areas. In addition, energy dissipation and transfer always occur where an intense interaction between vortices exists.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB720101 and 2012CB720103)the National Natural Science Foundation of China(Grant Nos.11272233,11332006,and 11411130150)
文摘When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.
基金Supported by the Natural Science Foundation of Zhejiang Province (No. 502047 and No. M503094)National Basic Research Program of China (No. 2003CB214500).
文摘A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian method was adopted to simulate the particle motion based on one-way coupling. It is found that the turbulent intensity profiles attain self-similar status in the jet downstream regions. At the Stokes number of 1, particles are concentrated largely in the outer boundaries of the large-scale vortex structures with the most uneven distribution and the widest dispersion in the lateral direction. Particles at the much smaller Stokes numbers are distributed evenly in the flow field, and the lateral dispersion is also considerable. Distribution of particles at much larger Stokes numbers is more uniform and the lateral dispersion becomes small. In addition, the inflow conditions have different effects on the particle dispersion. The direct numerical simulation (DNS) results accord with the previous experiments and numerical studies.