期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
THE STRUCTURAL FLOW IN PIPE CONTAINING POROUS MEDIUM SATURATED WITH POWER-LAW FLUID 被引量:1
1
作者 ZHOU Xiao-jun YU Min-chao 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第1期138-144,共7页
In this article,the method of volume averaging of flow in porous media and averaging theorem was employed to the Navier-Stokes equations.The total drag force per unit volume was considered as the bulk damping resistan... In this article,the method of volume averaging of flow in porous media and averaging theorem was employed to the Navier-Stokes equations.The total drag force per unit volume was considered as the bulk damping resistance due to the porous structure(i.e.,the Darcy resistance)and the resistance due to the inertia force(i.e.,the Forchheimer resistance),then the Brinkman-Forchheimer extended Darcy model was obtained from average momentum equation.The structural flow in a pipe containing porous medium saturated with power law fluid was applied in the present study.A new theoretical analysis of fully developed non-Darcy flow in a pipe containing a fibrous medium saturated with power law fluid was conducted.Using the integration method,the boundary layer solutions were obtained for flow core velocity and its radius.These theoretical solutions were used to analyze the effects of the Darcy number and inertia parameter on the axial velocity profile in the porous medium pipe. 展开更多
关键词 power-law fluid porous media volume averaging structural flow non-Darcy regime
原文传递
Structural ensemble dynamics based closure model for wall-bounded turbulent flow 被引量:11
2
作者 Zhen-Su She Ning Hu You Wu State Key Laboratory for Turbulence and Complex Systems and Dept Mechanical and Aerospace Engineering,College of Engineering, Peking University,100871 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第5期731-736,共6页
Wall-bounded turbulent flow involves the development of multi-scale turbulent eddies, as well as a sharply varying boundary layer. Its theoretical descriptions are yet phenomenological. We present here a new framework... Wall-bounded turbulent flow involves the development of multi-scale turbulent eddies, as well as a sharply varying boundary layer. Its theoretical descriptions are yet phenomenological. We present here a new framework called structural ensemble dynamics (SED), which aims at using systematically all relevant statistical properties of turbulent structures for a quantitative description of ensemble means. A new set of closure equations based on the SED approach for a turbulent channel flow is presented. SED order functions are defined, and numerically determined from data of direct numerical simulations (DNS). Computational results show that the new closure model reproduces accurately the solution of the original Navier-Stokes simulation, including the mean velocity profile, the kinetic energy of the streamwise velocity component, and every term in the energy budget equation. It is suggested that the SED-based studies of turbulent structure builds a bridge between the studies of physical mechanisms of turbulence and the development of accurate model equations for engineering predictions. 展开更多
关键词 TURBULENCE Closure equation Channel flow structural ensemble dynamics
下载PDF
Flow Structure and Short-Term Riverbed Evolution in Curved Flumes
3
作者 Shuxian Gao Yonggang Cao +1 位作者 Yuchuan Bai Yanhua Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第2期487-500,共14页
River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been ... River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation. 展开更多
关键词 Continuous curved flume experimental study flow structure bed short-term evolution living flexible vegetation
下载PDF
Inlet Recirculation Influence to the Flow Structure of Centrifugal Impeller 被引量:10
4
作者 YANG Ce CHEN Shan +2 位作者 LI Du YANG Changmao WANG Yidi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期647-654,共8页
Inlet recirculation is proved as an effective way for centrifugal compressor surge margin extension,and is successively used in some engineering applications.Unfortunately its working mechanism is still not being well... Inlet recirculation is proved as an effective way for centrifugal compressor surge margin extension,and is successively used in some engineering applications.Unfortunately its working mechanism is still not being well understood,which leads to redesigning of inlet recirculation mostly by experience.Also,most study about inlet recirculation is steady to date.It is necessary to study surge margin extension mechanism about inlet recirculation.To expose the mechanism in detail,steady and unsteady numerical simulations were performed on a centrifugal compressor with and without inlet recirculation.The results showed that,with inlet recirculation,the inlet axial velocity is augmented,relative Mach number around blade tip leading edge area is significantly reduced and so is the flow angle.As the flow angle decreased,the incidence angle reduced which greatly improves the flow field inside the impeller.Moreover,inlet recirculation changes the blade loading around blade tip and restrains the flow separation on the blade suction side at the leading edge area.The unsteady results of static pressure around blade surface,entropy at inlet crossflow section and vorticity distributions at near tip span surface indicated that,at near stall condition,strong fluctuation exists in the vicinity of tip area due to the interaction between tip leakage flow and core flow.By inlet recirculation these strong flow fluctuations are eliminated so the flow stability is greatly enhanced.All these improvements mentioned above are the reason for inlet recirculation delays compressor stall.This research reveals the surge margin extension reason of inlet recirculation from an unsteady flow viewpoint and provides important reference for inlet recirculation structure design. 展开更多
关键词 centrifugal compressor inlet recirculation flow field calculation flow structure UNSTEADY
下载PDF
A novel complex network-based deep learning method for characterizing gas-liquid two-phase flow 被引量:4
5
作者 Zhong-Ke Gao Ming-Xu Liu +1 位作者 Wei-Dong Dang Qing Cai 《Petroleum Science》 SCIE CAS CSCD 2021年第1期259-268,共10页
Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to t... Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to the recognition of flow regime and the optimal design of industrial equipment.In this paper,we propose a novel complex network-based deep learning method for characterizing gas-liquid flow.Firstly,we map the multichannel measurements to multiple limited penetrable visibility graphs(LPVGs)and obtain their degree sequences as the graph representation.Based on the degree distribution,we analyze the complicated flow behavior under different flow structures.Then,we design a dual-input convolutional neural network to fuse the raw signals and the graph representation of LPVGs for the classification of flow structures and measurement of gas void fraction.We implement the model with two parallel branches with the same structure,each corresponding to one input.Each branch consists of a channel-projection convolutional part,a spatial-temporal convolutional part,a dense block and an attention module.The outputs of the two branches are concatenated and fed into several full connected layers for the classification and measurement.At last,our method achieves an accuracy of 95.3%for the classification of flow structures,and a mean squared error of 0.0038 and a mean absolute percent error of 6.3%for the measurement of gas void fraction.Our method provides a promising solution for characterizing gas-liquid flow and measuring flow parameters. 展开更多
关键词 Gas-liquid flow Gas void fraction flow structure Limited penetrable visibility graph Deep learning
下载PDF
Force and Flow Structure of an Airfoil Performing Some Unsteady Motions at Small Reynolds Number 被引量:9
6
作者 Sun Mao Hossein Hamdani (Institute of Fluid Mechanics,Beijing University of Aeronautics & Astronautics) 《空气动力学学报》 CSCD 北大核心 2000年第z1期96-102,共7页
关键词 flow Re Force and flow Structure of an Airfoil Performing Some Unsteady Motions at Small Reynolds Number
下载PDF
Detached-eddy simulation of flow around high-speed train on a bridge under cross winds 被引量:3
7
作者 陈敬文 高广军 朱春丽 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2735-2746,共12页
In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge mod... In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train. 展开更多
关键词 detached-eddy simulation high speed train BRIDGE cross wind flow structure train aerodynamics
下载PDF
Instantaneous and time-averaged flow structures around a blunt double-cone with or without supersonic film cooling visualized via nano-tracer planar laser scattering 被引量:3
8
作者 朱杨柱 易仕和 +2 位作者 何霖 田立丰 周勇为 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期368-373,共6页
In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scatt... In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions. 展开更多
关键词 blunt cone supersonic flow structure flow visualization supersonic film cooling
下载PDF
Analysis of flow around impermeable groynes on one side of symmetrical compound channel:An experimental study 被引量:2
9
作者 Hassan SafiAHMED Mohammad Mahdi HASAN Norio TANAKA 《Water Science and Engineering》 EI CAS 2010年第1期56-66,共11页
This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel w... This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel was used. Groyne models with three different groyne relative lengths, 0.5, 0.75, and 1.0, were used on one floodplain with single and series arrangements. Analysis of the experimental results using the measured flow velocity and water depth values showed that flow structure, velocity, and water depth mainly depend on groyne relative length and the relative distance between series groynes. The flow velocity at the main channel centerline increased by about 40%, 60%, and 85%, and in other parts on the horizontal plane at the floodplain mid-water, depth by about 75%, 125%, and 175% of its original value in eases of one-side floodplain groyne(s) with relative lengths of 0.5, 0.75, and 1.0, respectively. The effective distance between two groynes in series arrangement ranges from 3 to 4 times the groyne length. Using an impermeable groyne with a large relative length in river floodplains increases the generation of eddy and roller zones downstream of the groyne, leading to more scouring and deposition. To avoid that, the groyne relative length must be kept below half the floodplain width, 展开更多
关键词 impermeable groyne symmetrical compound channel FLOODPLAIN flow structure
下载PDF
Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil 被引量:2
10
作者 Qin Wu Biao Huang Guoyu Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期64-74,共11页
The objective of this paper is to address the transient flow structures around a pitching hydrofoil by com- bining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effecti... The objective of this paper is to address the transient flow structures around a pitching hydrofoil by com- bining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effectively, the Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) are utilized under the framework of Navier-Stokes flow computations. In the numerical simulations, the k-w shear stress trans- port (SST) turbulence model, coupled with a two-equation F-Reo transition model, is used for the turbulence closure. Results are presented for a NACA66 hydrofoil undergoing slowly and rapidly pitching motions from 0° to 15° then back to 0° at a moderate Reynolds number Re = 7.5 × 105. The results reveal that the transient flow structures can be observed by the LCS method. For the slowly pitching case, it consists of five stages: quasi-steady and laminar, transition from laminar to turbulent, vortex development, large-scale vortex shedding, and reverting to laminar. The observation of LCS and Lagrangian particle tracers elucidates that the trailing edge vortex is nearly attached and stable during the vortex development stage and the interaction between the leading and trailing edge vortex caused by the adverse pres- sure gradient forces the vortexes to shed downstream during the large-scale vortex shedding stage, which corresponds to obvious fluctuations of the hydrodynamic response. For the rapidly pitching case, the inflection is hardly to be observed and the stall is delayed. The vortex formation, interaction, and shedding occurred once instead of being repeated three times, which is responsible for just one fluctuation in the hydrody- namic characteristics. The numerical results also show that the FTLE field has the potential to identify the transient flows, and the LCS can represent the divergence extent of infinite neighboring particles and capture the interface of the vortex region. 展开更多
关键词 Transient flow structure Pitching hydrofoilFinite-time Lyapunov exponent Lagrangian coherentstructures
下载PDF
A mass balanced model of trophic structure and energy flows of a semi-closed marine ecosystem 被引量:8
11
作者 HAN Dongyan XUE Ying +1 位作者 ZHANG Chongliang REN Yiping 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第10期60-69,共10页
The marine ecosystem of the Jiaozhou Bay has degraded significantly in fisheries productivity and its ecological roles as spawning and nursery ground for many species of commercial importance has been declining in rec... The marine ecosystem of the Jiaozhou Bay has degraded significantly in fisheries productivity and its ecological roles as spawning and nursery ground for many species of commercial importance has been declining in recent years. A mass-balanced trophic model was developed using Ecopath with Ecosim to evaluate the trophic structure of the Jiaozhou Bay for improving ecosystem management. The model were parameterized based on the fisheries survey data in the Jiaozhou Bay in 2011, including 23 species groups and one detritus group according to their ecological roles. The trophic levels of these ecological groups ranged from 1(primary producers and detritus) to4.3(large demersal fishes). The estimated total system throughput was 12 917.10 t/(km^2·a), with 74.59% and25.41% contribution of the total energy flows from phytoplankton and detritus, respectively. Network analyses showed that the overall transfer efficiency of the ecosystem was 14.4%, and the mean transfer efficiency was 14.5%for grazing food chain and 13.9% for detritus food chain. The system omnivory index(SOI), Finn's cycled index(FCI) and connectance index(CI) were relatively low in this area while the total primary production/total respiration(TPP/TR) was high, indicating an immature and unstable status of the Jiaozhou Bay ecosystem. Mixed trophic impact analysis revealed that the cultured shellfish had substantial negative impacts on most functional groups. This study contributed to ecosystem-level evaluation and management planning of the Jiaozhou Bay ecosystem. 展开更多
关键词 Ecopath with Ecosim Jiaozhou Bay energy flow trophic structure
下载PDF
Experimental studies on flow visualization and velocity field of compression ramp with different incoming boundary layers 被引量:1
12
作者 武宇 易仕和 +2 位作者 何霖 陈植 朱杨柱 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期384-395,共12页
Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocit... Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time- averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25~, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28~, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique "v". Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity. 展开更多
关键词 compression ramp incoming boundary layer fine flow structure velocity field
下载PDF
Numerical study of the flow structures in flat plate and the wall-mounted hump induced by the unsteady DBD plasma 被引量:1
13
作者 俞建阳 刘华坪 +1 位作者 王若玉 陈浮 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第1期57-63,共7页
In this work,the dielectric-barrier-discharge plasma actuator was employed to study the flow structures induced by the plasma actuator over a flat plate and a wall-mounted hump.A phenomenological dielectric-barrier-di... In this work,the dielectric-barrier-discharge plasma actuator was employed to study the flow structures induced by the plasma actuator over a flat plate and a wall-mounted hump.A phenomenological dielectric-barrier-discharge plasma model which regarded the plasma effect as the body force was implemented into the Navier–Stokes equations solved by the method of large eddy simulations.The results show that a series of vortex pairs,which indicated dipole formation and periodicity distribution were generated in the boundary layer when the plasma was applied to the flow over a flat plane.They would enhance the energy exchanged between the near wall region and the free stream.Besides,their spatial trajectories are deeply affected by the actuation strength.When the actuator was engaged in the flow over a wall-mounted hump,the vortex pairs were also produced,which was able to delay flow separation as well as to promote flow reattachment and reduce the generation of a vortex,achieving the goal of reducing dissipation and decreasing flow resistance. 展开更多
关键词 DBD plasma flow structure large eddy simulations fluid dynamic
下载PDF
Investigation on 3Dt wake flow structures of swimming bionic fish 被引量:1
14
作者 G.-X.Shen G.-K.Tan G.-J.Lai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1494-1508,共15页
A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robo... A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support frame- work using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a trans- lational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow. 展开更多
关键词 Fish swimming 3D flow structure Unsteadyhydrodynamics DSPIV measurement - Vortex ring
下载PDF
Edge Structure of Reynolds Stress and Poloidal Flow on the HL-1M Tokamak 被引量:6
15
作者 洪文玉 王恩耀 +2 位作者 曹建勇 李强 刘达致 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第3期791-796,共6页
The measurement on radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric field have been performed in the plasma boundary region of the HL-IM Tokamak using a multi-ar... The measurement on radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric field have been performed in the plasma boundary region of the HL-IM Tokamak using a multi-array of Mach/Langmuir probes. In the experiments of Lower Hybrid Current Drive (LHCD), Supersonic Molecular Beam injection (SMBI), Multi-shot Pellet Injection (MPI) and Neutral Beam injection (NBI), the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The results indicate that a sheared poloidal flow can be generated in Tokamak plasma due to radially varying Reynolds stress. 展开更多
关键词 LHCD Edge Structure of Reynolds Stress and Poloidal flow on the HL-1M Tokamak HL
下载PDF
Numerical study on three-dimensional flow field of continuously rotating detonation in a toroidal chamber 被引量:4
16
作者 Xu-Dong Zhang Bao-Chun Fan +2 位作者 Ming-Yue Gui Zhen-Hua Pan Gang Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期66-72,共7页
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ... Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems. 展开更多
关键词 Continuously rotating detonation - Three- dimensional flow field structure - Numerical study Detonation parameters deficit ~ Effects of wall geometries
下载PDF
Identification of boundary surfaces in flows
17
作者 B.HERRERA J.PALLARES 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第9期1097-1104,共8页
In this study, boundary surfaces of a flow field are defined as stream surfaces, on which the shear rates vanish, and a procedure is proposed to find them. The method, based on calculations using the velocity vector f... In this study, boundary surfaces of a flow field are defined as stream surfaces, on which the shear rates vanish, and a procedure is proposed to find them. The method, based on calculations using the velocity vector field, is independent of the coordinate system adopted. 展开更多
关键词 interracial surfaces structure of flow KINEMATICS
下载PDF
NUMERICAL STUDY OF TOPOLOGICAL STRUCTURE OF 3-D TRANSONIC VISCOUS FLOW FIELD (TVFF) INSIDE TURBINE CASCADE
18
作者 Guo Yanhu, Shen Mengyu, Wang Baoguo (Dept. Eng. Mech., Tsinghua University, Beijing, 100084, China) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第3期15-22,共8页
The major purpose of this paper is to numerically study the complex structure of vortex system occurring within transonic turbine cascade. The transonic viscous flow in turbine cascade is simulated by solving full 3D ... The major purpose of this paper is to numerically study the complex structure of vortex system occurring within transonic turbine cascade. The transonic viscous flow in turbine cascade is simulated by solving full 3D Reynolds average N S equations, and then detailed analyses of vortex system structure are presented. Under guidance of topology, the wall limiting streamlines are employed to reveal the flow structure near the wall, and an analysis of space streamlines and cross section streamlines is given for the investigation of flow structure in the flow field. Through the analysis, the formation and evolution of the vortex system and the whole process of separation occurring within this turbine cascade are revealed 展开更多
关键词 supersonic turbines three dimensional flow viscous flow flow structure numerical simulation
下载PDF
Experiment on the Effect of Sediment Concentration on Flow Structure
19
作者 Chen, Li Wu, Menwu +1 位作者 Deng, Xiaoli Huang, Rongmin 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2005年第S1期41-45,共5页
The paper studies on the sediment-laden flow by using MicroADV.Laboratory calibration has been conducted to determine the relationship between backscattered signal strength and sediment concentration. Based on the exp... The paper studies on the sediment-laden flow by using MicroADV.Laboratory calibration has been conducted to determine the relationship between backscattered signal strength and sediment concentration. Based on the experimental data,the interactions between sediment and fluid in open channel flow are investi- gated.The experiment shows that there exist inner relation between sediment concentration and turbulence, and the relationship is distinctry related to the diameter of particle as well as the flow co... 展开更多
关键词 turbulence intensity mean velocity sediment concentration flow structure
下载PDF
FLOW STRUCTURES AND FORCE CHARACTERISTICS FOR FLAT PLATE IN OSCILLATORY FLOWS WITH K_c NUMBER FROM 2 TO 40 AND IN COMBINED FLOWS
20
作者 凌国灿 刘国华 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1992年第1期35-43,共9页
The evolution of wake structures and variation of the forces on a flat plate in harmonic oscillatory and in-line combined flows are obtained numerically by improved discrete vortex method. For the oscillatory oncoming... The evolution of wake structures and variation of the forces on a flat plate in harmonic oscillatory and in-line combined flows are obtained numerically by improved discrete vortex method. For the oscillatory oncoming flow cases, when K_c number varies from 2 to 40, the vortex pattern changes from a 'harmonic wave' shaped (in a range of small K_c numbers) to a slight inclined 'harmonic wave' shaped (in a range of moderate K_c numbers), then to inclined vortex clusters with an angle of 50 ° to the oncoming flow direction (at K_c = 20), at last, as K_c number becomes large, the vortex pattern is like a normal Karman vortex street. The well predicted drag and inertia force coefficients are obtained, which are more close to the results of Keulegan & Carpenter's experiment as compared with previous vortex simulation by other au- thors. The existence of minimum point of inertia force coefficient C_m near K_c = 20 is also well predicted and this phenomenon can be interpreted according to the vortex structure. For steady-oscillatory in-line combined flow cases, the vortex modes behave like a vortex street, exhibit a 'longitudinal wave' structure, and a vor- tex cluster shape corresponding to the ratios of U_m to U_0 which are of O (10^(-1)), O(1)and O (10), respectively. The effect on the prediction of forces on the flat plate from the disturbance component in a combined flow has been demon- strated qualitatively. In addition to this, the lock-in phenomenon of vortex shedding has been checked. 展开更多
关键词 flow structure force coefficients oscillatory flow combined flow that plate discrete vortex method
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部