期刊文献+
共找到9,662篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel
1
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
下载PDF
Energy evolution and structural health monitoring of coal under different failure modes:An experimental study
2
作者 Yarong Xue Xueqiu He +4 位作者 Dazhao Song Zhenlei Li Majid Khan Taoping Zhong Fei Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期917-928,共12页
Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.T... Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology. 展开更多
关键词 energy dissipation structural health monitoring early warning coal-rock mechanics failure mode
下载PDF
Improving autoencoder-based unsupervised damage detection in uncontrolled structural health monitoring under noisy conditions
3
作者 Yang Kang Wang Linyuan +4 位作者 Gao Chao Chen Mozhi Tian Zhihui Zhou Dunzhi Liu Yang 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第6期91-100,共10页
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh... Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions. 展开更多
关键词 structural health monitoring guided waves principal component analysis deep learning DENOISING dynamic environmental condition
下载PDF
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group
4
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 structural health monitoring(SHM) BRIDGES big model Convolutional Neural Network(CNN) Finite Element Method(FEM)
下载PDF
Structural Health Monitoring by Accelerometric Data of a Continuously Monitored Structure with Induced Damages
5
作者 Giada Faraco Andrea Vincenzo De Nunzio +1 位作者 Nicola Ivan Giannoccaro Arcangelo Messina 《Structural Durability & Health Monitoring》 EI 2024年第6期739-762,共24页
The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a g... The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a goal of extreme and current interest.In the present work,the results obtained from the processing of experimental data of a real structure are shown.The analyzed structure is a lattice structure approximately 9 m high,monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels.The data used refer to continuous monitoring that lasted for a total of 1 year,during which minor damage was caused to the structure by alternatively removing some bracings and repositioning them in the structure.Two methodologies detecting damage based on decomposition techniques of the acquired data were used and tested,as well as a methodology combining the two techniques.The results obtained are extremely interesting,as all the minor damage caused to the structure was identified by the processing methods used,based solely on the monitored data and without any knowledge of the real structure being analyzed.The results use 15 acquisitions in environmental conditions lasting 10 min each,a reasonable amount of time to get immediate feedback on possible damage to the structure. 展开更多
关键词 structural health monitoring damage detection vibration measurements stochastic subspace identification
下载PDF
Ultra‑High Sensitivity Anisotropic Piezoelectric Sensors for Structural Health Monitoring and Robotic Perception
6
作者 Hao Yin Yanting Li +4 位作者 Zhiying Tian Qichao Li Chenhui Jiang Enfu Liang Yiping Guo 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期432-446,共15页
Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor strugg... Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy. 展开更多
关键词 Flexible piezoelectric filaments ANISOTROPIC Ultra-high sensitivity structural health detection Texture recognition
下载PDF
Review and Prospect of Research on Structural Health Monitoring Technology for Bridges
7
作者 Guoyi Liu 《Journal of Architectural Research and Development》 2024年第3期156-161,共6页
As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its a... As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges. 展开更多
关键词 Bridge structural health monitoring Safe operation monitoring technology
下载PDF
Discussion on Structural Health Monitoring of Urban Underground Road Tunnel
8
作者 Yike Wei 《Journal of World Architecture》 2024年第5期18-23,共6页
The number of urban underground road tunnels in China is increasing year by year,and health monitoring of tunnels is an effective management method to ensure their structural integrity.However,for shorter underground ... The number of urban underground road tunnels in China is increasing year by year,and health monitoring of tunnels is an effective management method to ensure their structural integrity.However,for shorter underground road tunnel projects,insufficient investment often leads to less frequent application of health monitoring systems.The application of intelligent structural health monitoring means can not only reduce the project cost but also help workers fully understand the actual situation of the tunnel structure.Therefore,this paper analyzes the characteristics,problems,and design of the urban underground road tunnel structural health monitoring system,and discusses the implementation of the urban underground road tunnel structural health monitoring system. 展开更多
关键词 Urban underground road Tunnel structure health monitoring
下载PDF
Thermally Conductive and UV-EMI Shielding Electronic Textiles for Unrestricted and Multifaceted Health Monitoring 被引量:1
9
作者 Yidong Peng Jiancheng Dong +8 位作者 Jiayan Long Yuxi Zhang Xinwei Tang Xi Lin Haoran Liu Tuoqi Liu Wei Fan Tianxi Liu Yunpeng Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期149-162,共14页
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,... Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation. 展开更多
关键词 Skin electronics Thermal regulating textiles Electromagnetic interference shielding Ultraviolet proof health monitoring
下载PDF
Deformation warning index for reinforced concrete dam based on structural health monitoring data and numerical simulation 被引量:2
10
作者 Ming-qiang Zhan Bo Chen Zhong-ru Wu 《Water Science and Engineering》 EI CAS CSCD 2023年第4期408-418,共11页
The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it diffi... The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety.In this study,a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data,statistical models,three-dimensional finite element model(FEM)numerical simulation,and the critical conditions of the dam structure.A statistical model was established to separate the water pressure component.Then,a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component.Furthermore,the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately.In addition,the method for inversion of comprehensive mechanical parameters after dam reinforcement was used.The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated.A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model.The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms.It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams. 展开更多
关键词 Deformation warning index structural health monitoring Finite element simulation REINFORCEMENT Multiple-arch dam Parameter inverse analysis
下载PDF
Wearable Healthcare and Continuous Vital Sign Monitoring with IoT Integration
11
作者 Hamed Taherdoost 《Computers, Materials & Continua》 SCIE EI 2024年第10期79-104,共26页
Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases ... Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes. 展开更多
关键词 Wearable healthcare IoT integration patient care remote patient monitoring real-time data transmission health technology
下载PDF
Building the Capacity of Health Professionals in Monitoring and Evaluation in a Public Health Institution: Experience of the National Institute of Public Health (NIPH) of Côte d’Ivoire
12
作者 Esme Marie Laure Essis N’guetta Mathilde Manouan +9 位作者 Anna-Corine Estell Liema Bissouma Ethmonia Kouamé Ekissi Orsot Tetchi Sagou Olivier Yayo Stephane Claon Yao Eugene Konan William Yavo Agbaya Stephane Oga Tenenan Jean Marie Yeo Joseph Aka 《Health》 2024年第8期731-749,共19页
Background: In the context of the fight against HIV, a lack of skills in monitoring and evaluating the personnel in charge of activities has been identified at the national level. It was the subject of a priority axis... Background: In the context of the fight against HIV, a lack of skills in monitoring and evaluating the personnel in charge of activities has been identified at the national level. It was the subject of a priority axis of the national plan for monitoring and evaluating the fight against HIV (2006-2010) that was aimed at strengthening the capacities of actors in this area. To increase the critical mass of competent human resources in the short term, the National Institute of Public Health (NIPH) of Côte d’Ivoire organized monitoring and evaluation training sessions for healthcare professionals from 2011 to 2016. Methods: A single case study with multiple levels of analysis was carried out, combining a qualitative survey and a literature review. An evaluation was carried out six months after each training session. In addition, the results of the pre- and post-tests and of the daily and final evaluations that accompanied the various training sessions were used to provide further information. The qualitative data collected were analyzed using INVIVO 15 software. Results: Some 89 health professionals (69% men and 31% women) working at the national level (51% at the central level, including 58% in health programs) and in development partner agencies (37%) participated in this capacity building program. Most participants were senior health managers (56%), data managers (23%), and statisticians and computer scientists (10%). Almost all the trainings were financed by 16 technical and financial partners (85%), mainly the MEASURE Evaluation project (27%). Conclusion: M&E training, despite all its imperfections, has made it possible to identify M&E training needs at the national level and to increase the critical mass of national skills and to have some culture in M&E. 展开更多
关键词 Short-Term Training Capacity Building monitoring and Evaluation health Professional AFRICA Côte d’Ivoire
下载PDF
Personalized Health Monitoring Systems: Integrating Wearable and AI
13
作者 Ion-Alexandru Secara Dariia Hordiiuk 《Journal of Intelligent Learning Systems and Applications》 2024年第2期44-52,共9页
The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearabl... The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearable technologies and AI on healthcare, highlighting the development and theoretical application of the Integrated Personal Health Monitoring System (IPHMS). By integrating data from various wearable devices, such as smartphones, Apple Watches, and Oura Rings, the IPHMS framework aims to revolutionize personal health monitoring through real-time alerts, comprehensive tracking, and personalized insights. Despite its potential, the practical implementation faces challenges, including data privacy, system interoperability, and scalability. The evolution of healthcare technology from traditional methods to AI-enhanced wearables underscores a significant advancement towards personalized care, necessitating further research and innovation to address existing limitations and fully realize the benefits of such integrated health monitoring systems. 展开更多
关键词 Wearables AI Personalized healthcare health monitoring Systems
下载PDF
Development of piezoelectric-based technology for application in civil structural health monitoring
14
作者 Qian Feng Yabin Liang 《Earthquake Research Advances》 CSCD 2023年第2期54-61,共8页
Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for a... Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for application in the field of civil structural health monitoring(CSHM),was summarized and discussed.Based on the different identification mechanisms,the piezoelectric transducer-based technology can be divided into two main approaches as the active or passive sensing and detection methods.This paper summarized the development of these two approaches and discussed their applications in the area of civil structural health monitoring,such as structural and concrete engineering,bridge engineering,pipeline engineering,protection engineering for geological hazards and earthquake disasters,and so on.In addition,the electrical mechanical impedance(EMI)technique,as one of the active identification methods,was also detailly presented.Finally,its great potential for the piezoelectric-based technique was presented based on the detail discussion,especially in the areas of civil structural health monitoring. 展开更多
关键词 Piezoelectric-based technology Civil structural health monitoring Active or passive sensing Detection methods
下载PDF
Statistical Models for Condition Monitoring and State of Health Estimation of Lithium-Ion Batteries for Ships
15
作者 Erik Vanem Qin Liang +4 位作者 Maximilian Bruch Gjermund Bøthun Katrine Bruvik Kristian Thorbjørnsen Azzeddine Bakdi 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第1期11-20,共10页
Battery systems are increasingly being used for powering ocean going ships,and the number of fully electric or hybrid ships relying on battery power for propulsion is growing.To ensure the safety of such ships,it is i... Battery systems are increasingly being used for powering ocean going ships,and the number of fully electric or hybrid ships relying on battery power for propulsion is growing.To ensure the safety of such ships,it is important to monitor the available energy that can be stored in the batteries,and classification societies typically require the state of health(SOH)to be verified by independent tests.This paper addresses statistical modeling of SOH for maritime lithium-ion batteries based on operational sensor data.Various methods for sensor-based,data-driven degradation monitoring will be presented,and advantages and challenges with the different approaches will be discussed.The different approaches include cumulative degradation models and snapshot models,models that need to be trained and models that need no prior training,and pure data-driven models and physics-informed models.Some of the methods only rely on measured data,such as current,voltage,and temperature,whereas others rely on derived quantities such as state of charge.Models include simple statistical models and more complicated machine learning techniques.Insight from this exploration will be important in establishing a framework for data-driven diagnostics and prognostics of maritime battery systems within the scope of classification societies. 展开更多
关键词 BATTERY condition monitoring data-driven analytics DIAGNOSTICS state of health
下载PDF
Operational modal identification of suspension bridge based on structural health monitoring system 被引量:7
16
作者 李枝军 李爱群 韩晓林 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期104-107,共4页
An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The method... An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements. 展开更多
关键词 suspension bridge operational modal identification structural health monitoring system ambient vibration test
下载PDF
Wearable sweat biosensors on textiles for health monitoring 被引量:3
17
作者 Yuqing Shi Ziyu Zhang +2 位作者 Qiyao Huang Yuanjing Lin Zijian Zheng 《Journal of Semiconductors》 EI CAS CSCD 2023年第2期11-24,共14页
With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monit... With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare. 展开更多
关键词 BIOSENSOR textile-based electronics wearable device sweat analysis health monitoring
下载PDF
Health Monitoring of Milling Tool Inserts Using CNN Architectures Trained by Vibration Spectrograms 被引量:1
18
作者 Sonali S.Patil Sujit S.Pardeshi Abhishek D.Patange 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期177-199,共23页
In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)t... In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)to assist detection of failure before it extends to the worse phase.Machine Learning(ML)based TCM has been extensively explored in the last decade.However,most of the research is now directed toward Deep Learning(DL).The“Deep”formulation,hierarchical compositionality,distributed representation and end-to-end learning of Neural Nets need to be explored to create a generalized TCM framework to perform eciently in a high-noise environment of cross-domain machining.With this motivation,the design of dierent CNN(Convolutional Neural Network)architectures such as AlexNet,ResNet-50,LeNet-5,and VGG-16 is presented in this paper.Real-time spindle vibrations corresponding to healthy and various faulty con􀀀gurations of milling cutter were acquired.This data was transformed into the time-frequency domain and further processed by proposed architectures in graphical form,i.e.,spectrogram.The model is trained,tested,and validated considering dierent datasets and showcased promising results. 展开更多
关键词 Milling tool inserts health monitoring vibration spectrograms deep learning convolutional neural network
下载PDF
Engineering Smart Composite Hydrogels for Wearable Health Monitoring 被引量:1
19
作者 Jianye Li Qiongling Ding +6 位作者 Hao Wang Zixuan Wu Xuchun Gui Chunwei Li Ning Hu Kai Tao Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期233-277,共45页
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome gene... Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely.During the health monitoring process,different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring. 展开更多
关键词 Wearable health monitoring Smart composite hydrogel Hydrogel engineering Wearable sensor Flexible and stretchable sensors
下载PDF
The State of the Art of Data Science and Engineering in Structural Health Monitoring 被引量:66
20
作者 Yuequan Bao Zhicheng Chen +3 位作者 Shiyin Wei Yang Xu Zhiyi Tang Hui Li 《Engineering》 SCIE EI 2019年第2期234-242,共9页
Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the... Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion. 展开更多
关键词 structural health monitoring monitoring DATA COMPRESSIVE sampling MACHINE LEARNING Deep LEARNING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部