期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Structural and Magnetic Properties of Mechanically Alloyed Nd_(15)Fe_(70)T_(15)N_δ(T=V,Mo) Magnets
1
作者 Xinguo ZHAO Zhidong ZHANG +1 位作者 Wei LIU Qun WAN and Xaokai SUN(Institute of Metal Research, Chinese Academy f Sciences, Shenyang, 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第1期1-4,共4页
Structural and magnetic properties of Nd15Fe70T15Nδ(T=V, Mo) alloys, made by mechanical alloying (MA) followed by heat-treatment and nitriding, have been investigated systematically.Effects of annealing temperature o... Structural and magnetic properties of Nd15Fe70T15Nδ(T=V, Mo) alloys, made by mechanical alloying (MA) followed by heat-treatment and nitriding, have been investigated systematically.Effects of annealing temperature on the structure and magnetic properties of the materials were studied by means of X-ray diffraction, AC susceptibility and high field magnetization measurements. Under pure argon atmosphere, the optimum temperatures for the heat treatment are found to be 75 and 850℃ for Nd15Fe7015Nδ and Nd15Fe70Mo15Nδ respectively. Correspondingly, the following magnetic properties are achieved : (1) Nd15Fe70V15Nδ:Br=0.63 T,,HC=8.01kA/cm (10.1 kOe), (BH )max=50.3 kJ/m3 (6 32 MGOe), (2) Nd15Fe70Mo15Nδ :Br=0.42 T. iHc=5.6 kA/cm (7.4 kOe), (BH )max=26.6 kJ/m3 (3.34 MGOe) 展开更多
关键词 FE T=V Mo T MAGNETS structural and Magnetic Properties of mechanically Alloyed Nd
下载PDF
A systematic review of rigid-flexible composite pavement
2
作者 Zhaohui Liu Shiqing Yu +2 位作者 You Huang Li Liu Yu Pan 《Journal of Road Engineering》 2024年第2期203-223,共21页
Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ... Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design. 展开更多
关键词 Rigid-flexible composite pavement structural mechanical properties Compression-shear failure Integrated design of structure and material
下载PDF
Microstructure and Mechanical Performance of Cu-SnO_2-rGO based Composites Prepared by Plasma Activated Sintering 被引量:2
3
作者 罗国强 HUANG Jing +4 位作者 JIN Zhipeng LI Meijuan JIANG Xiaojuan SHEN Qiang ZHANG Lianmeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1152-1158,共7页
A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers... A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41. 展开更多
关键词 graphene Cu-SnO2-rGO structure copper matrix composites sensitization plasma activated sintering mechanical property
下载PDF
Effect of Cooling Rate after hot Deformation on Structure and Mechanical Properties of Low Alloy Wear Resistance Cast iron
4
作者 刘剑平 李丽霞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期258-261,共4页
The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of pro... The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed. 展开更多
关键词 hot deformation low alloy wear resistance cast iron cooling rate structure and mechanical properties rare earths
下载PDF
INFLUENCE OF LANTHANUM ON THE STRUCTURE AND MECHANICAL PROPERTIES OF ALUMINUMSILICON EUTECTIC ALLOY
5
作者 坚增运 商宝禄 鲁德洋 《Journal of Rare Earths》 SCIE EI CAS CSCD 1990年第3期206-211,共6页
This paper deals with the characteristics of silicon modification with lanthanum of Al-Si eutectic alloy in sand mold and metal mold with optical microscopy,scanning electron microscopy,electron microprobe and X-ray d... This paper deals with the characteristics of silicon modification with lanthanum of Al-Si eutectic alloy in sand mold and metal mold with optical microscopy,scanning electron microscopy,electron microprobe and X-ray diffractometer.It is found that the amount of lanthanum,liquid alloy condition,holding time and stir- ring liquid influence the modification of silicon.The modification of silicon with lanthanum is of long effectiveness and has a“incubation time”.The modification can improve the ductility(δ_s)and tensile strength (σ_b)of the alloy,but their maximum values are not corresponding to the same amount of lanthanum. 展开更多
关键词 than La INFLUENCE OF LANTHANUM ON THE STRUCTURE AND mechanical PROPERTIES OF ALUMINUMSILICON EUTECTIC ALLOY
下载PDF
Composite structural modeling and tensile mechanical behavior of graphene reinforced metal matrix composites 被引量:9
6
作者 苏益士 李赞 +5 位作者 俞洋 赵蕾 李志强 郭强 熊定邦 张荻 《Science China Materials》 SCIE EI CSCD 2018年第1期112-124,共13页
Owing to its distinguished mechanical stiffness and strength, graphene has become an ideal reinforcing material in kinds of composite materials. In this work, the graphene(reduced graphene oxide) reinforced aluminum... Owing to its distinguished mechanical stiffness and strength, graphene has become an ideal reinforcing material in kinds of composite materials. In this work, the graphene(reduced graphene oxide) reinforced aluminum(Al)matrix composites were fabricated by flaky powder metallurgy. Tensile tests of pure Al matrix and graphene/Al composites with bioinspired layered structures are conducted.By means of an independently developed Python-based structural modeling program, three-dimensional microscopic structural models of graphene/Al composites can be established, in which the size, shape, orientation, location and content of graphene can be reconstructed in line with the actual graphene/Al composite structures. Elastoplastic mechanical properties, damaged materials behaviors, grapheneAl interfacial behaviors and reasonable boundary conditions are introduced and applied to perform the simulations. Based on the experimental and numerical tensile behaviors of graphene/Al composites, the effects of graphene morphology,graphene-Al interface, composite configuration and failure behavior within the tensile mechanical deformations of graphene/Al composites can be revealed and indicated, respectively.From the analysis above, a good understanding can be brought to light for the deformation mechanism of graphene/Al composites. 展开更多
关键词 graphene/Al composites structural modeling mechanical properties composite configuration failure behavior
原文传递
Determination of microcapsule physicochemical, structural, and mechanical properties 被引量:6
7
作者 Andrew Gray Stefan Egan +1 位作者 Serafim Bakalis Zhibing Zhang 《Particuology》 SCIE EI CAS CSCD 2016年第1期32-43,共12页
Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agr... Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agrochemicals is a dynamic and ever-progressing field of study. For microcapsules to be effective in providing protection from harsh environments or delivering large payloads, it is essential to have a good understanding of their properties to enable quality control during formulation, storage, and applications. This review aims to outline the commonly used techniques for determining the physicochemical, struc- tural, and mechanical properties of microcapsules, and highlights the interlinked nature of these three areas with respect to the end-use industrial application. This review provides information on techniques that are well supported in the literature, and also examines microcapsule analytical techniques that will become more prevalent as a result of new technological developments or extensions from other areas of study. 展开更多
关键词 Characterization Chemical composition Experimental technique mechanical properties Microcapsule Physical structure
原文传递
Investigation of Structural, Electronic and Mechanical Properties of Rubidium Metal Hydrides RbMH_4(M=B, Al, Ga)
8
作者 Santhosh Manoharan Rajeswarapalanichamy Ratnavelu +2 位作者 Sudhapriyanga Ganesapandian Kanagaprabha Shanmugam Iyakutti Kombiah 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第8期975-983,共9页
Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of rubidium metal hydrides RbMH4(M = B, Al, Ga) for five different crystal structures, nam... Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of rubidium metal hydrides RbMH4(M = B, Al, Ga) for five different crystal structures, namely hexagonal(P63mc), tetragonal(P42/nmc), tetragonal(P421c), orthorhombic(Pnma) and monoclinic(P21/c). Among the considered structures, tetragonal(P421c) phase is found to be the most stable one for these metal hydrides at normal pressure. A pressure-induced structural phase transition from tetragonal(P421c) to monoclinic(P21/c) phase is observed in all the three metal hydrides. The electronic structure reveals that these hydrides are wide band gap semiconductors. The calculated elastic constants indicate that these alkali metal tetrahydrides are mechanically stable at normal pressure. 展开更多
关键词 Ab initio calculations Crystal structure Phase transitions Electronic structure mechanical properties
原文传递
A Modifi ed Molecular Structure Mechanics Method for Analysis of Graphene
9
作者 华军 LI Dongbo +3 位作者 ZHAO Dong LIANG Shengwei LIU Qinlong JIA Ruiyan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1172-1178,共7页
Based on molecular mechanics and the deformation characteristics of the atomic lattice structure of graphene, a modifi ed molecular structure mechanics method was developed to improve the original one, that is, the se... Based on molecular mechanics and the deformation characteristics of the atomic lattice structure of graphene, a modifi ed molecular structure mechanics method was developed to improve the original one, that is, the semi-rigid connections were used to model the bond angle variations between the C-Cbonds in graphene. The simulated results show that the equivalent space frame model with semi-rigid connections for graphene proposed in this article is a simple, efficient, and accurate model to evaluate the equivalent elastic properties of graphene. Though the present computational model of the semi-rigid connected space frame is only applied to characterize the mechanical behaviors of the space lattices of graphene, it has more potential applications in the static and dynamic analyses of graphene and other nanomaterials. 展开更多
关键词 graphene molecular structure mechanics semi-rigid connections mechanical properties
下载PDF
In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing 被引量:13
10
作者 Liu Weidong Zhu Hua +3 位作者 Zhou Shengqiang Bai Yalei Wang Yuan Zhao Chunsheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期935-942,共8页
A novel 0-Poisson's ratio cosine honeycomb support structure of flexible skin is proposed. Mechanical model of the structure is analyzed with the energy method, finite element method (FEM) and experiments have been... A novel 0-Poisson's ratio cosine honeycomb support structure of flexible skin is proposed. Mechanical model of the structure is analyzed with the energy method, finite element method (FEM) and experiments have been performed to validate the theoretical model. The in-plane characteristics of the cosine honeycomb are compared with accordion honeycomb through analytical models and experiments. Finally, the application of the cosine honeycomb on a variable camber wing is studied. Studies show that mechanical model agrees well with results of FEM and experiments. The transverse non-dimensional elastic modulus of the cosine honeycomb increases (decreases) when the wavelength or the wall width increases (decreases), or when the amplitude decreases (increases). Compared with accordion honeycomb, the transverse non-dimensional elastic modulus of the cosine honeycomb is smaller, which means the driving force is smaller and the power consumption is less during deformation. In addition, the cosine honeycomb can satisfy the deform- ing requirements of the variable camber wing. 展开更多
关键词 Cosine honeycomb Flexible skin mechanical properties Morphing wing Smart structure
原文传递
Influence of size and distribution of W phase on strength and ductility of high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca alloy processed by indirect extrusion 被引量:3
11
作者 Hansi Jiang Xiaoguang Qiao +3 位作者 Chao Xu Shigeharu Kamado Kun Wu Mingyi Zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第2期277-283,共7页
A high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca (wt%) alloy containing W phase (Mg3Y2Zn3) prepared by permanent mold direct-chill casting is indirectly extruded at 350 ℃ and 400 ℃, respectively. The extruded alloys sh... A high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca (wt%) alloy containing W phase (Mg3Y2Zn3) prepared by permanent mold direct-chill casting is indirectly extruded at 350 ℃ and 400 ℃, respectively. The extruded alloys show bimodal grain structure consisting of fine dynamic recrystallized (DRXed) grains and unre- crystallized coarse regions containing fine W phase and β2′ precipitates. The fragmented W phase particles induced by extrusion stimulate nucleation of DRXed grains, leading to the formation of fine DRXed grains, which are mainly distributed near the W particle bands along the extrusion direction. The alloy extruded at 350 ℃ exhibits yield strength of 373 MPa, ultimate tensile strength of 403 MPa and elongation to failure of 5.1%. While the alloy extruded at 400 ℃ shows lower yield strength of 332 MPa, ultimate tensile strength of 352 MPa and higher elongation to failure of 12%. The mechanical properties of the as-extruded alloys vary with the distribution and size of W phase. A higher fraction of DRXed grains is obtained due to the homogeneous distribution of micron-scale broken W phase particles in the alloy extruded at 400 ℃, which can lead to higher ductility. In addition, the nano-scale dynamic W phase precipitates distributed in the unDRXed regions are refined at lower extrusion temperature. The smaller size of nano-scale W phase precipitates leads to a higher fraction of unDRXed regions which contributes to higher strength of the alloy extruded at 350 ℃. 展开更多
关键词 Mg alloy Extrusion temperature mechanical properties W phase Dynamic precipitation Bimodal structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部