期刊文献+
共找到28,578篇文章
< 1 2 250 >
每页显示 20 50 100
Development Trend of NC Machining Accuracy Control Technology for Aeronautical Structural Parts
1
作者 Qingchun Xiong Qinghua Zhou 《World Journal of Engineering and Technology》 2020年第3期266-279,共14页
High-performance five-axis computer numerical control machine tools are widely used in the processing of Aeronautical Structural parts. With the increase of service life, the precision of CNC machine tools equipped by... High-performance five-axis computer numerical control machine tools are widely used in the processing of Aeronautical Structural parts. With the increase of service life, the precision of CNC machine tools equipped by aeronautical manufacturing enterprises is declining day by day, while the new generation of aircraft structural parts <span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> developing towards integration, large-scale, complexity, thin-walled and lightweight. It is very easy to produce dimension overshoot and surface quality defects due to unstable processing technology. The machining accuracy of aircraft structural parts is also affected by complex factors such as cutting load, cutting stability, tool error, workpiece deformation, fixture deformation, etc. Because of the complexity of structure and characteristics of Aeronautical Structural parts, the consistency and stability of cutting process are poor. It is easy to cause machining accuracy problems due to tool wear, breakage and cutting chatter. Relevant scholars have carried out a lot of basic research on NC machining accuracy control and achieved fruitful results, but the research on NC machining accuracy control of Aeronautical structural parts is still less. This paper elaborates from three aspects: error modeling method of NC machine tools, error compensation method, prediction and control of machining accuracy, and combines the characteristics of Aeronautical Structural parts, the development trend and demand of NC machining accuracy control technology are put forward.</span> 展开更多
关键词 Aeronautical structural parts Machining Accuracy Error Compensation Machining Accuracy Control
下载PDF
Light-Weight Design Method for Force-Performance-Structure of Complex Structural Part Based Co-operative Optimization 被引量:3
2
作者 Ya-Li Ma Jian-Rong Tan +1 位作者 De-Lun Wang Zi-Zhe Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期115-123,共9页
A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a... A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a complex structural part is built to map the force transmission, where the force exerted areas and constraints are considered as connecting structure and the structural configuration, to determine the part performance as well as the force routines. Then the connecting structure design model, aiming to optimize the static and dynamic performances on connection configuration, is developed, and the optimum design of the characteristic parameters is carried out by means of the collaborative optimization method, namely, the integrated structural topology optimization and size optimization. In this design model, the objective is to maximize the connecting stiffness. Based on the relationship between the force and the structural configuration of a part, the optimal force transmission routine that can meet the performance requirements is obtained using the structural topology optimization technology. Accordingly, the light?weight design of conceptual configuration for complex parts under multi?objective and multi?condition can be realized. Finally, based on the proposed collaborative optimization design method, the optimal performance and optimal structure of the complex parts with light weight are realized, and the reasonable structural unit configuration and size charac?teristic parameters are obtained. A bed structure of gantry?type machining center is designed by using the proposed light?weight structure design method in this paper, as an illustrative example. The bed after the design optimization is lighter 8% than original one, and the rail deformation is reduced by 5%. Moreover, the lightweight design of the bed is achieved with enhanced performance to show the effectiveness of the proposed method. 展开更多
关键词 Light?weight design part structure Topology optimization Size optimization FORCE PERFORMANCE
下载PDF
Self‑Healing Dynamic Hydrogel Microparticles with Structural Color for Wound Management
3
作者 Li Wang Xiaoya Ding +5 位作者 Lu Fan Anne M.Filppula Qinyu Li Hongbo Zhang Yuanjin Zhao Luoran Shang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期177-190,共14页
Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morpho... Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morphology and structure to enhance flexibility and effectiveness in wound management.To achieve these,we propose a self-healing hydrogel dressing based on structural color microspheres for wound management.The microsphere comprised a photothermal-responsive inverse opal framework,which was constructed by hyaluronic acid methacryloyl,silk fibroin methacryloyl and black phosphorus quantum dots(BPQDs),and was further re-filled with a dynamic hydrogel.The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran(DEX-CA and DEX-BA).Notably,the composite microspheres can be applied arbitrarily,and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel.Additionally,eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism.Moreover,effective monitoring of the drug release process can be achieved through visual color variations.The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management.These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications. 展开更多
关键词 Black phosphorus structural color Dynamic hydrogel Inverse opal Wound management
下载PDF
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis
4
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
下载PDF
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
5
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY structural MECHANISMS
下载PDF
From single to combinatorial therapies in spinal cord injuries for structural and functional restoration
6
作者 Ernesto Doncel-Pérez Gabriel Guízar-Sahagún Israel Grijalva-Otero 《Neural Regeneration Research》 SCIE CAS 2025年第3期660-670,共11页
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychoso... Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord. 展开更多
关键词 neural regeneration NEUROPROTECTION spinal cord injury repair spinal cord injury treatments structural restoration of spinal cord injury
下载PDF
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations: A Review
7
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 structural health monitoring data information modal parameters damage identification AI method
下载PDF
Discrete Numerical Study on Type II Fracture of Partially Detached Concrete Panels in Cold Region
8
作者 Huayi Zhang Maobin Song +2 位作者 Lei Shen Nizar Faisal Alkayem Maosen Cao 《Structural Durability & Health Monitoring》 EI 2025年第1期167-191,共25页
When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on ... When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during con-struction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simula-tion technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placementfirst and then prestress-tensioning is proposed. 展开更多
关键词 Beam-string structure(BSS) concrete-filled steel tube(CFST) bending stiffness timing of concrete placement prestress-tensioning
下载PDF
Process-scheme-driven automatic construction of NC machining cell for aircraft structural parts 被引量:4
9
作者 Chen Shulin Zheng Guolei +2 位作者 Zhou Min Du Baorui Chu Hongzhen 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1324-1335,共12页
In order to enhance the NC programming efficiency and quality of aircraft structural parts (ASPs), an intelligent NC programming pattern driven by process schemes is presented. In this pattern, the NC machining cell... In order to enhance the NC programming efficiency and quality of aircraft structural parts (ASPs), an intelligent NC programming pattern driven by process schemes is presented. In this pattern, the NC machining cell is the minimal organizational structure in the technological process, consisting of an operation machining volume cell, and the type and parameters of the machining operation. After the machining cell construction, the final NC program can be easily obtained in a CAD/CAM system by instantiating the machining operation for each machining cell. Accordingly, how to automatically establish the machining cells is a key issue in intelligent NC program- ming. On the basis of the NC machining craft of ASP, the paper aims to make an in-depth research on this issue. Firstly, some new terms about the residual volume and the machinable volume are defined, and then, the technological process is modeled with a process scheme. Secondly, the approach to building the machining cells is introduced, in which real-time complement machining is mainly considered to avoid interference and overcutting. Thirdly, the implementing algorithm is designed and applied to the Intelligent NC Programming System of ASP. Finally, the developed algorithm is validated through two case studies. 展开更多
关键词 Aircraft structural part (ASP) Automatic programming Machining cell Process planning Process scheme Residual volume
原文传递
An allowance allocation method based on dynamic approximation via online inspection data for deformation control of structural parts
10
作者 Xiaozhong HAO Yingguang LI +3 位作者 Chong HUANG Mengqiu LI Changqing LIU Kai TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3495-3508,共14页
Deformation resulting from residual stress has been a significant issue in machining.As allowance allocation can directly impact the residual stress on part deformation,it is essential for deformation control.However,... Deformation resulting from residual stress has been a significant issue in machining.As allowance allocation can directly impact the residual stress on part deformation,it is essential for deformation control.However,it is difficult to adjust allowance allocation by traditional simulation methods based on residual stress,as the residual stress cannot be accurately measured or predicted,and many unexpected factors during machining process cannot be simulated accurately.Different from traditional methods,this paper proposes an allowance allocation method based on dynamic approximation via online inspection data for deformation control of structural parts.An Autoregressive Integrated Moving Average(ARIMA)model for dynamic allowance allocation is established so as to approach the minimum deformation,which is based on the in-process deformation inspection data during the alternative machining process of upside and downside.The effectiveness of the method is verified both by simulation cases and real machining experiments of aircraft structural parts,and the results show that part deformation can be significantly reduced. 展开更多
关键词 ARIMA model Deformation control Deformation inspection data Machining allowance allocation structural parts
原文传递
Structural Characterization and Octanol/water Partition Coefficients(LogP) Prediction for Oxygen-containing Organic Compounds 被引量:8
11
作者 廖立敏 黄茜 雷光东 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第8期1243-1250,共8页
New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed t... New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good. 展开更多
关键词 oxygen-containing organic compounds octanol/water partition coefficients(LogP) structural descriptors relationship between structures and properties
下载PDF
Structural response of aluminum core–shell particles in detonation environment 被引量:2
12
作者 Qing-Jie Jiao Qiu-Shi Wang +1 位作者 Jian-Xin Nie Hong-Bo Pei 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第8期387-392,共6页
Natural aluminum particles have the core-shell structure.The structure response refers to the mechanical behavior of the aluminum particle structure caused by external influences.The dynamic behavior of the structural... Natural aluminum particles have the core-shell structure.The structure response refers to the mechanical behavior of the aluminum particle structure caused by external influences.The dynamic behavior of the structural response of aluminum core-shell particles before combustion is of great importance for the aluminum powder burning mechanism and its applications.In this paper,an aluminum particle combustion experiment in a detonation environment is conducted and analyzed;the breakage factors of aluminum particles shell in detonation environment are analyzed.The experiment results show that the aluminum particle burns in a gaseous state and condenses into a sub-micron particle cluster.The calculation and simulation demonstrate that the rupture of aluminum particle shell in the detonation environment is mainly caused by the impact of the detonation wave.The detonation wave impacts the aluminum particles,resulting in shell cracking,and due to the shrinkage-expansion of the aluminum core and stripping of the detonation product,the cracked shell is fractured and peeled with the aluminum reacting with the detonation product. 展开更多
关键词 ALUMINUM CORE-SHELL partICLES structural response ALUMINUM COMBUSTION aluminized explosives
下载PDF
Creating burdock polysaccharide-oleanolic acid-ursolic acid nanoparticles to deliver enhanced anti-inflammatory effects:fabrication,structural characterization and property evaluation 被引量:3
13
作者 Shanshan Zhu Zhichang Qiu +5 位作者 Xuguang Qiao Geoffrey I.N.Waterhouse Wenqing Zhu Wenting Zhao Qiuxia He Zhenjia Zheng 《Food Science and Human Wellness》 SCIE CSCD 2023年第2期454-466,共13页
This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encaps... This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encapsulating OA+UA with ALPs(ALP:OA+UA,50:1;OA:UA,1:1)changed the crystalline nature to a more amorphous state through hydrogen bonding and involving O-H/C-O/O-C-O groups.ALP-OA/UA nanoparticles had a particle size and zeta potential(in water)of 199.1 nm/-7.15 mV,with a narrow unimodal size distribution,and excellent pH,salt solution,temperature and storage stability.Compared with ALPs,ALPOA/UA nanoparticles showed enhanced anti-inflammatory activity(especially at a dose of 100μg/mL)in a CuSO-induced zebrafish inflammation model via down-regulating the NF-κB signalling pathway and gene expression of associated transcription factors and cytokines(TNF-α,IL-1βand IL-8).Therefore,ALP-based nanoparticles are natural and anti-inflammatory carriers for hydrophobic bioactive molecules. 展开更多
关键词 ENCAPSULATION structural features particle size Zeta potential Thermodynamic properties In vivo verification
下载PDF
Effects of structural and operating parameters of ECP fan on dust particles removed in the transition flow regime 被引量:2
14
作者 Shiqiang Chen Youming Chen +2 位作者 Haiqiao Wang Ronghua Liu Haijiao Cui 《International Journal of Coal Science & Technology》 EI CAS 2014年第4期441-449,共9页
An enclosed cyclone passageway(ECP)dust-collecting fan is discussed.The ECP fan separates dust by centrifugal force originating from a driven spiral airflow,and its design takes the constraints of Chinese underground ... An enclosed cyclone passageway(ECP)dust-collecting fan is discussed.The ECP fan separates dust by centrifugal force originating from a driven spiral airflow,and its design takes the constraints of Chinese underground coal mines into consideration.Using the force equilibrium law,a general equation for dust removal in the centrifugal dust removal section(CDRS)of the ECP fan is deduced.This general equation is simplified using the CDRS structure and the fan operating parameters and is analysed numerically.The attractive results show that increases in the airflow rate of the fan,the structural ratio of the ECPs and the radius of the extended axis can improve the dust removal performance of the CDRS.Furthermore,the effects of the structural ratio and the radius on dust removal dominate over that of the flow rate,and the effect of the structural ratio is more significant than that of the radius. 展开更多
关键词 Dust removal Driven spiral airflow structural and operating parameters ECP fan
下载PDF
Structural and antioxidative properties of royal jelly protein by partial enzymatic hydrolysis 被引量:3
15
作者 Shanshan Li Lingchen Tao +3 位作者 Shiqin Peng Xinyu Yu Xiaobin Ma Fuliang Hu 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1820-1827,共8页
The objective of this study was to investigate the structural and antioxidative properties of royal jelly protein(RJP)at different degrees of hydrolysis(DH)by partial enzymatic hydrolysis. RJP was hydrolyzed by alcala... The objective of this study was to investigate the structural and antioxidative properties of royal jelly protein(RJP)at different degrees of hydrolysis(DH)by partial enzymatic hydrolysis. RJP was hydrolyzed by alcalase for 0 min, 15 min, 1 h, 5 h and 8 h to obtain hydrolysates at DH of 5.34%, 11.65%, 15.19%, 21.38% and 23.91%, respectively. With the increased DH, the RJP hydrolysates showed elevated antioxidative activities. The molecular weight of RJP hydrolysates was significantly decreased but their primary backbone kept unchanged. Analysis of circular dichroism spectra revealed that the enzymolysis reduced the content of α-helix but increased the contents of β-sheet, β-turn and random coil. Meanwhile, the surface hydrophobicity and fluorescence intensity of RJP hydrolysates were decreased and a red shift occurred. As the enzymolysis continued, the surface morphology of RJP was gradually changed from a sheet-like structure into microparticles. Changes in antioxidative activities and structures generally followed a DH-dependent manner, however these changes became insignificant for samples at DH beyond 20%. Taking into consideration of both effectiveness and productivity, the optimum enzymatic duration was determined at 5 h. 展开更多
关键词 Royal jelly protein Acalase Enzymatic hydrolysis Antioxidative activity STRUCTURE
下载PDF
Synthesis of NiMoO_4 nanoparticles by sol-gel method and their structural,morphological,optical,magnetic and photocatlytic properties 被引量:2
16
作者 V.UMAPATHY P.NEERAJA +1 位作者 A.MANIKANDAN P.RAMU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第8期1785-1793,共9页
Nickel molybdate(NiMoO4)nanoparticles(NPs)were synthesized by sol-gel method.Utilizing water as solvent providescrystalline nanostructures.These nanocrystals were structurally characterized by X-ray diffraction,energy... Nickel molybdate(NiMoO4)nanoparticles(NPs)were synthesized by sol-gel method.Utilizing water as solvent providescrystalline nanostructures.These nanocrystals were structurally characterized by X-ray diffraction,energy dispersive X-ray analysis(EDX),and Fourier transform infrared spectra.Compositional stoichiometry was confirmed by EDX technique.The size and shapewere observed by scanning electron microscopy(SEM)and transmission electron microscope(TEM).It was found that the obtainedNPs were pure and single phase crystalline with monoclinic structure.The optical properties were studied by ultraviolet-visiblediffuse reflectance spectroscopy(UV-Vis-DRS)and photoluminescence(PL)measurements at room temperature.The magneticproperties were studied by vibrating sample magnetometer(VSM)and results showed superparamagnetic behavior of the obtainednanoparticles.Photocatalytic activity of NiMoO4was studied.The photocatalytic activity of NiMoO4was enhanced with the additionof TiO2.The catalysts NiMoO4,TiO2and NiMoO4-TiO2nanocomposites(NC)were tested for photocatalytic degradation(PCD)of4-chlorophenol(4-CP).It was found that PCD efficiency of NiMoO4-TiO2NC was higher than that of pure NiMoO4and TiO2. 展开更多
关键词 NiMoO4 TiO2 NANOSTRUCTURE sol-gel synthesis optical properties magnetic properties PHOTO-CATALYSIS monoclinic structure
下载PDF
Factors influencing the internet banking adoption decision in North Cyprus: an evidence from the partial least square approach of the structural equation modeling 被引量:2
17
作者 Hiba Alhassany Faisal Faisal 《Financial Innovation》 2018年第1期422-442,共21页
Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social ... Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social environment and the expected risk.Design/methodology/approach:A self-administered survey was conducted with 291 participants responded to it.The partial least square approach of the structural equation modeling(PLS-SEM)is employed to investigate the direct effects of the proposed factors on the adoption decision.Additionally,the mediation test is used to examine indirect effects.Findings:Results showed that even though the participants appreciated the benefits of the online banking as the perceived usefulness factor exerts the greatest direct effect,they would rather use clear and easy-to-use websites,adding to that their assessments of the usefulness of these services are significantly influenced by the surrounding people’s views and prior experience.This is demonstrated by the total effects of the perceived ease of use and the subjective norm factors,which are greater than the direct effect of the perceived usefulness factor since both of these factors have significant direct and indirect effects mediated by the perceived usefulness factor.The negative impact of the perceived risk factor is weak compared to the previous factors.While the personal innovativeness factor showed the weakest effect among the proposed factors. 展开更多
关键词 Behavioral theories Technology adoption TAM Subjective norm Personal innovativeness Perceived risk partial least square structural equation modeling
下载PDF
Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm 被引量:1
18
作者 陆欣泽 邵桂芳 +2 位作者 许两有 刘暾东 文玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期151-158,共8页
Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically... Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically explore the stable structure and segregation behavior of tetrahexahedral Pt–Pd–Cu–Au quaternary alloy nanoparticles. Three alloy nanoparticles consisting of 443 atoms, 1417 atoms, and 3285 atoms are considered and compared. The preferred positions of atoms in the nanoparticles are analyzed. The simulation results reveal that Cu and Au atoms tend to occupy the surface, Pt atoms preferentially occupy the middle layers, and Pd atoms tend to segregate to the inner layers. Furthermore, Au atoms present stronger surface segregation than Cu ones. This study provides a fundamental understanding on the structural features and segregation phenomena of multi-metallic nanoparticles. 展开更多
关键词 alloy nanoparticle simulated annealing algorithm structural stability SEGREGATION
下载PDF
Investigation of the structural, electronic and mechanical properties of CaO–SiO_(2) compound particles in steel based on density functional theory 被引量:1
19
作者 Chao Gu Ziyu Lyu +1 位作者 Qin Hu Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期744-755,共12页
CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the struct... CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the structural, electronic, and mechanical properties of the compounds in CaO–SiO_(2)system are still not fully clarified due to the difficulties in the experiments. In this study, a thorough investigation of these properties of CaO–SiO_(2)compound particles in steels was conducted based on first-principles density functional theory. Corresponding phases were determined by thermodynamic calculation, including gamma dicalcium silicate(γ-C2S), alpha-prime(L) dicalcium silicate(αL′-C2S), alpha-prime(H) dicalcium silicate(αH′-C2S), alpha dicalcium silicate(α-C2S), rankinite(C3S2), hatrurite(C3S), wollastonite(CS), and pseudowollastonite(Ps-CS). The results showed that the calculated crystal structures of the eight phases agree well with the experimental results. All the eight phases are stable according to the calculated formation energies, and γ-C2S is the most stable. O atom contributes the most to the reactivity of these phases. The Young’s modulus of the eight phases is in the range of 100.63–132.04 GPa. Poisson’s ratio is in the range of0.249–0.281. This study provided further understanding concerning the CaO–SiO_(2)compound particles in steels and fulfilled the corresponding property database, paving the way for inclusion engineering and design in terms of fracture-resistant steels. 展开更多
关键词 CaO–SiO_(2) density functional theory structural property electronic property mechanical property
下载PDF
In-situ structural evolution of Bi_(2)O_(3) nanoparticle catalysts for CO_(2) electroreduction 被引量:1
20
作者 Hongbo Wang Chongyang Tang +6 位作者 Bo Sun Jiangchao Liu Yan Xia Wenqing Li Changzhong Jiang Dong He Xiangheng Xiao 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第3期113-120,共8页
Under the complex external reaction conditions,uncovering the true structural evolution of the catalyst is of profound significance for the establishment of relevant structure–activity relationships and the rational ... Under the complex external reaction conditions,uncovering the true structural evolution of the catalyst is of profound significance for the establishment of relevant structure–activity relationships and the rational design of electrocatalysts.Here,the surface reconstruction of the catalyst was characterized by ex-situ methods and in-situ Raman spectroscopy in CO_(2)electroreduction.The final results showed that the Bi_(2)O_(3) nanoparticles were transformed into Bi/Bi_(2)O_(3) two-dimensional thin-layer nanosheets(NSs).It is considered to be the active phase in the electrocatalytic process.The Bi/Bi_(2)O_(3) NSs showed good catalytic performance with a Faraday efficiency(FE)of 94.8%for formate and a current density of 26 mA cm^(−2) at−1.01 V.While the catalyst maintained a 90%FE in a wide potential range(−0.91 V to−1.21 V)and long-term stability(24 h).Theoretical calculations support the theory that the excellent performance originates from the enhanced bonding state of surface Bi-Bi,which stabilized the adsorption of the key intermediate OCHO^(∗) and thus promoted the production of formate. 展开更多
关键词 CO_(2)electroreduction structural evolution ELECTROCATALYSIS INTERFACE formic acid
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部