Charcot-Marie-Tooth disease type 1A(CMT1A) is caused by duplication of the peripheral myelin protein 22(PMP22) gene on chromosome 17. It is the most common inherited demyelinating neuropathy. Type 2 diabetes melli...Charcot-Marie-Tooth disease type 1A(CMT1A) is caused by duplication of the peripheral myelin protein 22(PMP22) gene on chromosome 17. It is the most common inherited demyelinating neuropathy. Type 2 diabetes mellitus is a common metabolic disorder that frequently causes predominantly sensory neuropathy. In this study, we report the occurrence of CMT1 A in a Chinese family affected by type 2 diabetes mellitus. In this family, seven individuals had duplication of the PMP22 gene, although only four had clinical features of polyneuropathy. All CMT1 A patients with a clinical phenotype also presented with type 2 diabetes mellitus. The other three individuals had no signs of CMT1 A or type 2 diabetes mellitus. We believe that there may be a genetic link between these two diseases.展开更多
Different from the traditional contact surface topography measurement,reflective intensity-modulated fiber optic sensor(RIM-FOS)has the unique advantages of non-contact nondestructive detection.This paper briefly intr...Different from the traditional contact surface topography measurement,reflective intensity-modulated fiber optic sensor(RIM-FOS)has the unique advantages of non-contact nondestructive detection.This paper briefly introduces the principle and performance of RIM-FOS for surface topography measurement and compares with several other methods of topography measurement.Based on the review of its development process,this paper summarizes and analyses the hot issues of RIM-FOS in the surface topography measurement,then predicts the future trend for a guidance of the further study.展开更多
Background: Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profilin...Background: Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transeriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data. Results: We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy. Conclusions: To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.展开更多
RNA molecules serve a wide range of functions that are closely linked to their structures.The basic structural units of RNA consist of single-and double-stranded regions.In order to carry out advanced functions such a...RNA molecules serve a wide range of functions that are closely linked to their structures.The basic structural units of RNA consist of single-and double-stranded regions.In order to carry out advanced functions such as catalysis and ligand binding,certain types of RNAs can adopt higher-order structures.The analysis of RNA structures has progressed alongside advancements in structural biology techniques,but it comes with its own set of challenges and corresponding solutions.In this review,we will discuss recent advances in RNA structure analysis techniques,including structural probing methods,X-ray crystallography,nuclear magnetic resonance,cryo-electron microscopy,and small-angle X-ray scattering.Often,a combination of multiple techniques is employed for the integrated analysis of RNA structures.We also survey important RNA structures that have been recently determined using various techniques.展开更多
Study of the local environment of certain ion is quite a complex problem. Due to the unique luminescent properties, Eu^3+ ions can be used as a structural probe. In this paper, effect of doping concentration,excitati...Study of the local environment of certain ion is quite a complex problem. Due to the unique luminescent properties, Eu^3+ ions can be used as a structural probe. In this paper, effect of doping concentration,excitation wavelength and excitation mechanism on asymmetry ratio was systematically studied using Y3Al5O12:Eu^3+, YVO4:Eu^3+ and Y2O3:Eu^3+nanophosphors. The asymmetry ratio gives information about the local surrounding and environmental changes around the Eu^3+ ions. Asymmetry ratios of YAG:Eu^3+and YVO4:Eu^3+ nanopowders were calculated using standard technique and the obtained average values were found to be 0.75 and 8.2, respectively. However, it is found that standard method of asymmetry ratio calculation is suitable only for samples where all Eu^3+ ions occupy one site. The "multisite model" of asymmetry ratio calculation was developed and used for Y2O3:Eu^3+ nanocrystalline powders. Average value of asymmetry ratio for Eu^3+ ions occupied "normal" sites is 6.0 and for Eu^3+ ions occupied "defect"sites is 2.3.展开更多
RNA folds into intricate structures that are crucial for its functions and regulations. To date, a multitude of approaches for probing structures of the whole transcriptome, i.e., RNA struc- turomes, have been develop...RNA folds into intricate structures that are crucial for its functions and regulations. To date, a multitude of approaches for probing structures of the whole transcriptome, i.e., RNA struc- turomes, have been developed. Applications of these approaches to different cell lines and tissues have generated a rich resource for the study of RNA structure-function relationships at a systems biology level. In this review, we first introduce the designs of these methods and their applications to study different RNA structuromes. We emphasize their technological differences especially their unique advantages and caveats. We then summarize the structural insights in RNA functions and regulations obtained from the studies of RNA structuromes. And finally, we propose potential directions for future improvements and studies.展开更多
To enable diverse functions and precise regulation,an RNA sequence often folds into complex yet distinct structures in different cellular states.Probing RNA in its native environment is essential to uncovering RNA str...To enable diverse functions and precise regulation,an RNA sequence often folds into complex yet distinct structures in different cellular states.Probing RNA in its native environment is essential to uncovering RNA structures of biological contexts.However,current methods generally require large amounts of input RNA and are challenging for physiologically relevant use.Here,we report smartSHAPE,a new RNA structure probing method that requires very low amounts of RNA input due to the largely reduced artefact of probing signals and increased efficiency of library construction.Using smartSHAPE,we showcased the profiling of the RNA structure landscape of mouse intestinal macrophages upon inflammation,and provided evidence that RNA conformational changes regulate immune responses.These results demonstrate that smartSHAPE can greatly expand the scope of RNA structure-based investigations in practical biological systems,and also provide a research paradigm for the study of post-transcriptional regulation.展开更多
文摘Charcot-Marie-Tooth disease type 1A(CMT1A) is caused by duplication of the peripheral myelin protein 22(PMP22) gene on chromosome 17. It is the most common inherited demyelinating neuropathy. Type 2 diabetes mellitus is a common metabolic disorder that frequently causes predominantly sensory neuropathy. In this study, we report the occurrence of CMT1 A in a Chinese family affected by type 2 diabetes mellitus. In this family, seven individuals had duplication of the PMP22 gene, although only four had clinical features of polyneuropathy. All CMT1 A patients with a clinical phenotype also presented with type 2 diabetes mellitus. The other three individuals had no signs of CMT1 A or type 2 diabetes mellitus. We believe that there may be a genetic link between these two diseases.
基金Youth Science and Technology Research Foundation of Shanxi Province(No.2015021104)Programs for Science and Technology Development of Shanxi Province(No.201703D121028-2)
文摘Different from the traditional contact surface topography measurement,reflective intensity-modulated fiber optic sensor(RIM-FOS)has the unique advantages of non-contact nondestructive detection.This paper briefly introduces the principle and performance of RIM-FOS for surface topography measurement and compares with several other methods of topography measurement.Based on the review of its development process,this paper summarizes and analyses the hot issues of RIM-FOS in the surface topography measurement,then predicts the future trend for a guidance of the further study.
文摘Background: Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transeriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data. Results: We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy. Conclusions: To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.
基金National Key R&D Program of China(2021YFA1301500,2017YFA0504600,2022YFC2303700,2022YFA1302700,2022YFF1203100)National Natural Science Foundation of China(U1832215,32171191,91940302,32230018 and 32125007)+6 种基金Strategic Priority Research Program of Chinese Academy of Sciences(XDB37010201,XDB0490000)Center for Advanced Interdisciplinary Science and Biomedicine of IHM(QYPY20220019)the Fundamental Research Funds for the Central Universities(WK9100000032 and WK9100000044)Guangdong Science and Technology Department(2022A1515010328,2020B1212060018 and 2020B1212030004)the Postdoctoral Foundation of Tsinghua-Peking Center for Life Sciences[to J.Z.]the Beijing Advanced Innovation Center for Structural Biology[to Q.C.Z.]the Tsinghua-Peking Joint Center for Life Sciences[to Q.C.Z.].
文摘RNA molecules serve a wide range of functions that are closely linked to their structures.The basic structural units of RNA consist of single-and double-stranded regions.In order to carry out advanced functions such as catalysis and ligand binding,certain types of RNAs can adopt higher-order structures.The analysis of RNA structures has progressed alongside advancements in structural biology techniques,but it comes with its own set of challenges and corresponding solutions.In this review,we will discuss recent advances in RNA structure analysis techniques,including structural probing methods,X-ray crystallography,nuclear magnetic resonance,cryo-electron microscopy,and small-angle X-ray scattering.Often,a combination of multiple techniques is employed for the integrated analysis of RNA structures.We also survey important RNA structures that have been recently determined using various techniques.
基金Project supported by the Russian Foundation for Basic Research(RFBR 16-32-00091)
文摘Study of the local environment of certain ion is quite a complex problem. Due to the unique luminescent properties, Eu^3+ ions can be used as a structural probe. In this paper, effect of doping concentration,excitation wavelength and excitation mechanism on asymmetry ratio was systematically studied using Y3Al5O12:Eu^3+, YVO4:Eu^3+ and Y2O3:Eu^3+nanophosphors. The asymmetry ratio gives information about the local surrounding and environmental changes around the Eu^3+ ions. Asymmetry ratios of YAG:Eu^3+and YVO4:Eu^3+ nanopowders were calculated using standard technique and the obtained average values were found to be 0.75 and 8.2, respectively. However, it is found that standard method of asymmetry ratio calculation is suitable only for samples where all Eu^3+ ions occupy one site. The "multisite model" of asymmetry ratio calculation was developed and used for Y2O3:Eu^3+ nanocrystalline powders. Average value of asymmetry ratio for Eu^3+ ions occupied "normal" sites is 6.0 and for Eu^3+ ions occupied "defect"sites is 2.3.
基金supported by the National Natural Science Foundation of China(Grant No.31671355)the National Thousand Young Talents Program of China to QCZ
文摘RNA folds into intricate structures that are crucial for its functions and regulations. To date, a multitude of approaches for probing structures of the whole transcriptome, i.e., RNA struc- turomes, have been developed. Applications of these approaches to different cell lines and tissues have generated a rich resource for the study of RNA structure-function relationships at a systems biology level. In this review, we first introduce the designs of these methods and their applications to study different RNA structuromes. We emphasize their technological differences especially their unique advantages and caveats. We then summarize the structural insights in RNA functions and regulations obtained from the studies of RNA structuromes. And finally, we propose potential directions for future improvements and studies.
基金the National Key R&D Program of China(2019YFA0110002 and 2018YFA0107603 to Q.C.Z,and 2020YFA0509100 to X.H.)National Natural Science Foundation of China(Grants No.32125007,91940306,91740204,and 31761163007 to Q.C.Z,and 31725010,31821003,31991174,32030037,82150105 to X.H.)Research Grants Council of the Hong Kong SAR,China Project No.N_CityU110/17 to C.K.K.
文摘To enable diverse functions and precise regulation,an RNA sequence often folds into complex yet distinct structures in different cellular states.Probing RNA in its native environment is essential to uncovering RNA structures of biological contexts.However,current methods generally require large amounts of input RNA and are challenging for physiologically relevant use.Here,we report smartSHAPE,a new RNA structure probing method that requires very low amounts of RNA input due to the largely reduced artefact of probing signals and increased efficiency of library construction.Using smartSHAPE,we showcased the profiling of the RNA structure landscape of mouse intestinal macrophages upon inflammation,and provided evidence that RNA conformational changes regulate immune responses.These results demonstrate that smartSHAPE can greatly expand the scope of RNA structure-based investigations in practical biological systems,and also provide a research paradigm for the study of post-transcriptional regulation.