期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
A Quantitative Structure Property Relationship for Prediction of Flash Point of Alkanes Using Molecular Connectivity Indices 被引量:3
1
作者 Morteza Atabati Reza Emamalizadeh 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期420-426,共7页
Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecul... Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K. 展开更多
关键词 quantitative structure property relationship flash point molecular connectivity indices hydrogen perturbation ALKANE
下载PDF
Prediction of Molar Absorptivities of Color Reagents and Their Color Reactions with Yttrium by Artificial Neural Networks
2
作者 李华 许禄 苏锵 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第4期302-307,共6页
The new topological indices A x1 A x3 suggested in our laboratories were applied to the study of structure property relationships between color reagents and their color reactions with yttrium. The ... The new topological indices A x1 A x3 suggested in our laboratories were applied to the study of structure property relationships between color reagents and their color reactions with yttrium. The topological indices of twenty asymmetrical phosphone bisazo derivatives of chromotropic acid were calculated. The work shows that QSPR can be used as a novel aid to predict the molar absorptivities of color reactions and in the long term to be helpful tool in color reagent design. Multiple regression analysis and neural network were employed simultaneously in this study. The results demonstrated the feasibility and the effectiveness of the method. 展开更多
关键词 rare earths YTTRIUM color reagents quantitative structure property relationships neural networks
下载PDF
Application of TLSER method in predicting the aqueous solubility and n-octanol/water partition coefficient of PCBs,PCDDs and PCDFs 被引量:12
3
作者 HUANGJun YUGang +3 位作者 ZHANGZu-lin WANGYi-lei ZHUWei-hua WUGuo-shi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第1期21-29,共9页
The theoretical linear solvation energy relationship(TLSER) approach was adopted to predict the aqueous solubility and n -octanol/water partition coefficient of three groups of environmentally important chemicals-poly... The theoretical linear solvation energy relationship(TLSER) approach was adopted to predict the aqueous solubility and n -octanol/water partition coefficient of three groups of environmentally important chemicals-polychlorinated biphenyls(PCBs), polychlorinated dibenzodioxins and dibenzofurans(PCDDs and PCDFs). For each compound, five quantum parameters were calculated using AM1 semiempirical molecular orbital methods and used as structure descriptors: average molecular polarizability(α), energy of the lowest unoccupied molecular orbit( E _ LUMO ), energy of the highest occupied molecular orbit( E _ HOMO ), the most positive charge on a hydrogen atom( q _+), and the most negative atomic partial charge( q _-) in the solute molecule. Then standard independent variables in TLSER equation was extracted and two series of quantitative equations between these quantum parameters and aqueous solubility and n -octanol/water partition coefficient were obtained by stepwise multiple linear regression(MLR) method. The developed equations have both quite high accuracy and explicit meanings. And the cross-validation test illustrated the good predictive power and stability of the established models. The results showed that TLSER could be used as a promising approach in the estimation of partition and solubility properties of macromolecular chemicals, such as persistent organic pollutants. 展开更多
关键词 persistent organic pollutants(POPs) quantitative structure property relationship(QSPR) theoretical linear solvation energy relationship(TLSER) polychlorinated biphenyls (PCBs) polychlorinated dibenzo- p -dioxins(PCDDs) polychlorinated di
下载PDF
Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions 被引量:9
4
作者 Xiao-Meng Liu Xiaoyang Cui +7 位作者 Kamran Dastafkan Hao-Fan Wang Cheng Tang Chuan Zhao Aibing Chen Chuanxin He Minghan Han Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期290-302,I0010,共14页
The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electro... The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batteries emerge in response to the need for developing sustainable energy carriers, in which the oxygen evolution reaction and the oxygen reduction reaction play key roles. However, both reactions suffer from sluggish kinetics that restricts the reactivity. Therefore, it is vital to probe into the structure of the catalysts to exploit high-performance bifunctional oxygen electrocatalysts. Spinel-type catalysts are a class of materials with advantages of versatility, low toxicity, low expense, high abundance, flexible ion arrangement, and multivalence structure. In this review, we afford a basic overview of spinel-type materials and then introduce the relevant theoretical principles for electrocatalytic activity, following that we shed light on the structure–property relationship strategies for spinel-type catalysts including electronic structure, microstructure, phase and composition regulation,and coupling with electrically conductive supports. We elaborate the relationship between structure and property, in order to provide some insights into the design of spinel-type bifunctional oxygen electrocatalysts. 展开更多
关键词 Spinel electrocatalyst Bifunctional energy electrocatalysis Oxygen evolution reaction Oxygen reduction reaction structureproperty relationship
下载PDF
Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis 被引量:5
5
作者 Xianfeng Huang Guangxing Yang +4 位作者 Shuang Li Hongjuan Wang Yonghai Cao Feng Peng Hao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期721-751,共31页
Since the two seminal papers were published independently in 2004, high-entropy-alloys(HEAs) have been applied to structural and functional materials due to the enhanced mechanical properties, thermal stability, and e... Since the two seminal papers were published independently in 2004, high-entropy-alloys(HEAs) have been applied to structural and functional materials due to the enhanced mechanical properties, thermal stability, and electrical conductivity. In recent years, HEA nanoparticles(HEA-NPs) were paid much attention to in the field of catalysis for the promoted catalytic activity. Furthermore, the various ratios among the metal components and tunable bulk and surface structures enable HEAs have big room to enhance the catalytic performance. Especially, noble-metal-based HEAs displayed significantly improved performance in electrocatalysis, where the ‘core effects’ were employed to explain the superior catalytic activity. However, it is insufficient to understand the essential mechanism or further guide the design of electrocatalysts. Structure–property relationship should be disclosed for the catalysis on HEA-NPs to accelerate the process of seeking high effective and efficient electrocatalysts. Therefore, we summarized the recent advances of noble-metal-based HEA-NPs applied to electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, methanol oxidation reaction, ethanol oxidation reaction, formic acid oxidation reaction, hydrogen oxidation reaction, carbon dioxide reduction reaction and nitrogen reduction reaction. For each electrocatalytic reaction, the reaction mechanism and catalyst structure were presented, and then the structure–property relationship was elaborated. The review begins with the development, concept, four ‘core effect’ and synthesis methods of HEAs. Next,the electrocatalytic reactions on noble-metal-based HEA-NPs are summarized and discussed independently. Lastly, the main views and difficulties pertaining to structure–property relationship for HEAs are discussed. 展开更多
关键词 Noble-metal-based High-entropy-alloy Nanoparticles ‘Core effects’ structureproperty relationship ELECTROCATALYSIS
下载PDF
Heterogeneous Fenton degradation of azodyes catalyzed by modified polyacrylonitrile fiber Fe complexes: QSPR (quantitative structure peorperty relationship) study 被引量:4
6
作者 Bing Li Yongchun Dong Zhizhong Ding 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第7期1469-1476,共8页
The amidoximated polyacrylonitrile (PAN) fiber Fe complexeswere prepared and used as the heterogeneous Fenton catalysts for thedegradation of28 anionicwater soluble azodyes inwater under visible irradiation. The mul... The amidoximated polyacrylonitrile (PAN) fiber Fe complexeswere prepared and used as the heterogeneous Fenton catalysts for thedegradation of28 anionicwater soluble azodyes inwater under visible irradiation. The multiple linear regression (MLR) methodwas employed todevelop the quantitative structure property relationship (QSPR) model equations for thedecoloration and mineralization of azodyes. Moreover, the predictive ability of the QSPR model equationswas assessed using Leave-one-out (LOO) and cross-validation (CV) methods. Additionally, the effect of Fe content of catalyst and the sodium chloride inwater on QSPR model equationswere also investigated. The results indicated that the heterogeneous photo-Fentondegradation of the azodyeswithdifferent structureswas conducted in the presence of the amidoximated PAN fiber Fe complex. The QSPR model equations for thedyedecoloration and mineralizationwere successfullydeveloped using MLR technique. MW/S (molecularweightdivided by the number of sulphonate groups) and N N=N (the number of azo linkage) are considered as the most importantdetermining factor for thedyedegradation and mineralization, and there is a significant negative correlation between MW/S or N N=N anddegradation percentage or total organic carbon (TOC) removal. Moreover, LOO and CV analysis suggested that the obtained QSPR model equations have the better prediction ability. The variation in Fe content of catalyst and the addition of sodium chloridedid not alter the nature of the QSPR model equations. 展开更多
关键词 AZODYE heterogeneous Fentondegradation quantitative structure property relationship polyacrylonitrile fiber Fe complex
原文传递
Structural Characterization and Octanol/water Partition Coefficients(LogP) Prediction for Oxygen-containing Organic Compounds 被引量:8
7
作者 廖立敏 黄茜 雷光东 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第8期1243-1250,共8页
New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed t... New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good. 展开更多
关键词 oxygen-containing organic compounds octanol/water partition coefficients(LogP) structural descriptors relationship between structures and properties
下载PDF
In situ TEM revealing the effects of dislocations on lithium-ion migration in transition metal dichalcogenides 被引量:1
8
作者 Ruiwen Shao Chengkai Yang +8 位作者 Chen Yang Shulin Chen Weikang Dong Bairong Li Xiumei Ma Jing Lu Lixin Dong Peng Gao Dapeng Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期280-284,共5页
The two-dimensional (2D) structure of layered transition metal dichalcogenides (TMDs) provides unusual physical properties [1,2]and chemical reactivity [3,4], which can be influenced by defects such as dislocations [5... The two-dimensional (2D) structure of layered transition metal dichalcogenides (TMDs) provides unusual physical properties [1,2]and chemical reactivity [3,4], which can be influenced by defects such as dislocations [5,6]. For example, dislocations can act as nucleation sites for the onset of deformation when subjected to stress [7]. 展开更多
关键词 BATTERIES DEFECT structureproperty relationships ELECTRODES Transition metal dichalcogenides
下载PDF
Machine learning in materials design:Algorithm and application 被引量:1
9
作者 Zhilong Song Xiwen Chen +4 位作者 Fanbin Meng Guanjian Cheng Chen Wang Zhongti Sun Wan-Jian Yin 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期52-80,共29页
Traditional materials discovery is in ‘trial-and-error’ mode, leading to the issues of low-efficiency, high-cost, and unsustainability in materials design. Meanwhile, numerous experimental and computational trials a... Traditional materials discovery is in ‘trial-and-error’ mode, leading to the issues of low-efficiency, high-cost, and unsustainability in materials design. Meanwhile, numerous experimental and computational trials accumulate enormous quantities of data with multi-dimensionality and complexity, which might bury critical ‘structure–properties’ rules yet unfortunately not well explored. Machine learning(ML), as a burgeoning approach in materials science, may dig out the hidden structure–properties relationship from materials bigdata, therefore, has recently garnered much attention in materials science. In this review, we try to shortly summarize recent research progress in this field, following the ML paradigm:(i) data acquisition →(ii) feature engineering →(iii) algorithm →(iv) ML model →(v) model evaluation →(vi) application. In section of application, we summarize recent work by following the ‘material science tetrahedron’:(i) structure and composition →(ii) property →(iii) synthesis →(iv) characterization, in order to reveal the quantitative structure–property relationship and provide inverse design countermeasures. In addition, the concurrent challenges encompassing data quality and quantity, model interpretability and generalizability, have also been discussed. This review intends to provide a preliminary overview of ML from basic algorithms to applications. 展开更多
关键词 machine learning materials design structureproperty relationship active learning
下载PDF
Structural Isomerization in Cu(I)Clusters:Tracing the Cu Thermal Migration Paths and Unveiling the Structure-Dependent Photoluminescence 被引量:1
10
作者 Xi Fan Furong Yuan +4 位作者 Jiaqi Wang Zhibin Cheng Shengchang Xiang Huayan Yang Zhangjing Zhang 《CCS Chemistry》 CAS CSCD 2023年第2期350-360,共11页
Revealing structural isomerization in metal clusters would bridge a huge structural gap between small molecular isomerization and solid–solid phase transformation.However,genuine structural isomerism in metal cluster... Revealing structural isomerization in metal clusters would bridge a huge structural gap between small molecular isomerization and solid–solid phase transformation.However,genuine structural isomerism in metal clusters is still rare.In this work,we report the first example of structural isomerismin Cu clusters.By utilizing the coordination flexibility of alkyne to enable the migration of partial Cu atoms in Cu metal cores,two Cu_(15)cluster complexes(Cu_(15)-a and Cu_(15)-c)possessing identical composition but different metal core structures have been successfully isolated.Interestingly,although the structure of Cu_(15)-a can be retained in CH_(2)C_(l2)solution below 27°C,it will gradually change to give an intermediate state,Cu_(15)-b,as the temperature rises(at about 31°C)before it eventually transforms into Cu_(15)-c(at 40∼65°C).Significantly,atomically precise Cu_(15)-b clearly provides footprints for tracing the thermal migration process of Cu atoms during the thermal transformation from Cu_(15)-a to Cu_(15)-c.In addition,Cu_(15)-a and Cu_(15)-c exhibit diverse crystallization-induced emission enhancement phenomena.Crystalline Cu_(15)-c displays redshifted photoluminescence(820 nm)compared with Cu_(15)-a(726 nm)due to the shorter mean Cu···Cu distance in Cu_(15)-c.Notwithstanding,crystalline Cu_(15)-a exhibits much more intense photoluminescence at room temperature than that in Cu_(15)-c,which might be attributed to the stronger intermolecular C–H⋯πinteractions in Cu_(15)-a.These results indicate that cluster isomerism provides valuable opportunities for insight into the structure–property relationships and understanding the complex evolution of phase transformation in nanometallic solids. 展开更多
关键词 cluster compounds metal clusters structural isomerism isomeric transformation structureproperty relationships
原文传递
Electron-transporting boron-doped polycyclic aromatic hydrocarbons:Facile synthesis and heteroatom doping positions-modulated optoelectronic properties
11
作者 Tingting Huang Zhuanlong Ding +6 位作者 Hao Liu Ping-An Chen Longfeng Zhao Yuanyuan Hu Yifan Yao Kun Yang Zebing Zeng 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期447-451,共5页
While heteroatom doping serves as a powerful strategy for devising novel polycyclic aromatic hydrocarbons(PAHs), the further fine-tuning of optoelectronic properties via the precisely altering of doping patterns remai... While heteroatom doping serves as a powerful strategy for devising novel polycyclic aromatic hydrocarbons(PAHs), the further fine-tuning of optoelectronic properties via the precisely altering of doping patterns remains a challenge. Herein, by changing the doping positions of heteroatoms in a diindenopyrene skeleton, we report two isomeric boron, sulfur-embedded PAHs, named Anti-B_(2)S_(2) and Syn-B_(2)S_(2), as electron transporting semiconductors. Detailed structure-property relationship studies revealed that the varied heteroatom positions not only change their physicochemical properties, but also largely affect their solid-state packing modes and Lewis base-triggered photophysical responses. With their low-lying frontier molecular orbital levels, n-type characteristics with electron mobilities up to 1.5 × 10^(-3)cm^(2)V^(-1)s^(-1)were achieved in solution-processed organic field-effect transistors. Our work revealed the critical role of controlling heteroatom doping patterns for designing advanced PAHs. 展开更多
关键词 Polycyclic aromatic hydrocarbon Optoelectronic properties Heteroatom doping n-Type organic semiconductors structureproperty relationship
原文传递
Design,synthesis and applications of functional zirconium-based metal-organic frameworks 被引量:5
12
作者 Le Shi Zhenning Yang +1 位作者 Fanrui Sha Zhijie Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第12期3383-3397,共15页
Zirconium-based metal-organic frameworks(Zr-MOFs)have been explored for applications including but not limited to water adsorption,gas storage and separation,heterogeneous catalysis,and chemical sensing.Zr-MOFs serve ... Zirconium-based metal-organic frameworks(Zr-MOFs)have been explored for applications including but not limited to water adsorption,gas storage and separation,heterogeneous catalysis,and chemical sensing.Zr-MOFs serve as a major class of functional MOFs thanks to their high thermal,chemical and hydrolytic stability,large surface area,and tunable structures with the versatile connectivity.In this work,we highlight the design and synthesis of zirconium-based MOFs as well as their applications.Specifically,we demonstrate how reticular chemistry can direct the rational design and synthesis of functional ZrMOFs and describe their structure–property relationship.In addition,we feature synthetic strategies,including isoreticular expansion,linker functionalization,node functionalization,and defect engineering,as toolkits to construct tailored material for specific applications. 展开更多
关键词 metal-organic frameworks Zr-MOFs reticular chemistry structureproperty relationship
原文传递
Recent progress in COF-based electrode materials for rechargeable metal-ion batteries 被引量:3
13
作者 Shunhang Wei Jiwei Wang +3 位作者 Yuzhao Li Zebo Fang Lei Wang Yuxi Xu 《Nano Research》 SCIE EI CSCD 2023年第5期6753-6770,共18页
Covalent organic frameworks(COFs)have emerged as promising electrode materials for rechargeable metal-ion batteries and have gained much attention in recent years due to their high specific surface area,inherent poros... Covalent organic frameworks(COFs)have emerged as promising electrode materials for rechargeable metal-ion batteries and have gained much attention in recent years due to their high specific surface area,inherent porosity,tunable molecular structure,robust framework,abundant active sites.Moreover,compared with inorganic materials and small organic molecules,COFs have the advantages of multi-electron transfer,short pathways,high cycling stability.Although great progress on COF-based electrodes has been made,the corresponding electrochemical performance is still far from satisfactory for practical applications.In this review,we first summarize the fundamental background of COFs,including the species of COFs(different active covalent bonds)and typical synthesis methods of COFs.Then,the key challenges and the latest research progress of COF-based cathodes and anodes for metal-ion batteries are reviewed,including Li-ion batteries,Na-ion batteries,K-ion batteries,Zn-ion batteries,et al.Moreover,the effective strategies to enhance electrochemical performance of COF-based electrodes are presented.Finally,this review also covers the typical superiorities of COFs used in energy devices,as well as providing some perspectives and outlooks in this field.We hope this review can provide fundamental guidance for the development of COFbased electrodes for metal-ion batteries in the further research. 展开更多
关键词 covalent organic frameworks metal-ion batteries electrochemical performance synthetic methods structureproperty relationship
原文传递
化合物PbGa_(4)Se_(7)中[PbSe_(3)]和[GaSe_(4)]功能基元的强极化实现高的相位匹配二次谐波效应 被引量:2
14
作者 郑哲雄 邱智鑫 +4 位作者 谢潮泓 张阳苹 姜小明 刘彬文 郭国聪 《Science China Materials》 SCIE EI CAS CSCD 2023年第7期2795-2802,共8页
二次谐波效应和相位匹配能力对于二阶非线性光学晶体的实际应用至关重要.在本工作中,我们通过将具有立体化学活性电子对的Pb^(2+)引入非相位匹配的Ga_(2)Se_(3),增强其各向异性和二阶超极化率.基于以上策略,我们制备了一种硒化物PbGa_(4... 二次谐波效应和相位匹配能力对于二阶非线性光学晶体的实际应用至关重要.在本工作中,我们通过将具有立体化学活性电子对的Pb^(2+)引入非相位匹配的Ga_(2)Se_(3),增强其各向异性和二阶超极化率.基于以上策略,我们制备了一种硒化物PbGa_(4)Se_(7),其晶体结构由类金刚石阴离子骨架和插入到间隙中的Pb^(2+)组成.在1910 nm的激光照射下,PbGa_(4)Se_(7)具有大的二次谐波系数(3.3×AgGaS_(2));同时,其具有低的热膨胀系数各向异性(0.5)和合适的光学带隙(2.1 eV),在2090 nm激光照射下,表现出高的激光诱导损伤阈值(7.0×AgGaS_(2)).PbGa_(4)Se_(7)的相位匹配能力和强二次谐波效应可归因于非线性光学功能基元(四面体GaSe_(4)和金字塔PbSe_(3)结构单元)的协同作用产生了额外的各向异性和极化率. 展开更多
关键词 CHALCOGENIDE nonlinear optical material second-harmonic generation phase matchability structure and property relationship
原文传递
Hydroxyl-terminated Polyethylenes Bearing Functional Side Groups:Facile Synthesis and Their Properties
15
作者 Wan-Bin Zhang Jie Luo +5 位作者 Yan-Meng Wang Xiu-Zhong Zhu Ce Zhang Jing Liu Mei-Le Ni Guang-Hua Zhang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第8期994-1003,I0006,共11页
A series of hydroxyl-terminated polyethylenes(HTPE)bearing various functional side groups(e.g.carboxyl,ester and butane groups)were synthesized by the combination of ring opening metathesis polymerization(ROMP)and vis... A series of hydroxyl-terminated polyethylenes(HTPE)bearing various functional side groups(e.g.carboxyl,ester and butane groups)were synthesized by the combination of ring opening metathesis polymerization(ROMP)and visible light photocatalytic thiol-ene reaction.The products are named as a,w-dihydroxyl-polyllpropionyloxythio)methinetrimethylene](HTPECarboxy),a,w dihydroxy-poly(methylpropionatethio)methinetrimethylene](HTPEeser)and a,wdihydroxyl-poly[(butylthio)methinetrimethylene](HTPEbutane)respectively.The investigation of ROMP indicated that the molecular weight of resultant hydroxy-terminated polybutadiene(HTPB)can be tailored by varying the feed ratios of monomer to chain transfer agent(CTA).The exploration of the photocatalytic thiol-ene reaction between HTPB precursor and methyl-3-mercaptopropionate revealed that blue light as well as oxygen accelerated the reaction.1H-NMR and 13C-NMR results verified all the double bonds in HTPB can be modified,and the main chain of resultant polymer can be considered as polyethylene.Subsequently,relationship between the structure of side groups and the thermal properties of functional PEs was studied.And the results suggested that the Tg was in the order of HTPEbuane<HTPEester<HTPEarboxy+.Greater interaction between side groups resulted in higher Tg.Moreover,all the functional PE samples exhibited poor thermostability as compared to HTPB.Finally,the promising applications for functional PEs were explored.HTPEcarboxy1 can be utilized as a smart material with pH-responsive properties due to its pH-dependent ionization of carboxyl side groups.HTPEbutane can be employed as a macro-initiator for building the triblock copolymer due to the presence of active hydroxyl end groups.HTPEester can serve as a plasticizer for PVC which can enhance the ductilityt of PVC without obviously sacrificing strength. 展开更多
关键词 POLYETHYLENE Ring-opening metathesis polymerization Thiol-ene reaction POLYBUTADIENE structure property relationships
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部