提出基于F isher距离测度的线性分类器符合统计学习理论框架的观点,结合主分量分析和遗传算法提出一种基于结构风险最小化(Structural R isk M in im ization,简称SRM)归纳原则的分类器设计方法.通过对比遗传算法和穷举法的运算量,阐明...提出基于F isher距离测度的线性分类器符合统计学习理论框架的观点,结合主分量分析和遗传算法提出一种基于结构风险最小化(Structural R isk M in im ization,简称SRM)归纳原则的分类器设计方法.通过对比遗传算法和穷举法的运算量,阐明所提出的特征提取方法在采用F isher线性分类器分类时的优势.最后采用所提出的基于SRM归纳原则的方法对一组人脑慢皮层电位数据进行了分类仿真实验,并将结果与该组数据竞赛优胜者的结果进行了对比,性能得到了明显提高.展开更多
文摘提出基于F isher距离测度的线性分类器符合统计学习理论框架的观点,结合主分量分析和遗传算法提出一种基于结构风险最小化(Structural R isk M in im ization,简称SRM)归纳原则的分类器设计方法.通过对比遗传算法和穷举法的运算量,阐明所提出的特征提取方法在采用F isher线性分类器分类时的优势.最后采用所提出的基于SRM归纳原则的方法对一组人脑慢皮层电位数据进行了分类仿真实验,并将结果与该组数据竞赛优胜者的结果进行了对比,性能得到了明显提高.