Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is ...Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is actually the investigation of the atmospheric refractive index. The atmospheric structure constant of refractive index, C n 2 , is an important parameter denoting atmospheric turbulence. In this paper, C n 2 is measured during the day and at night and in all four seasons using a high sensitivity micro-thermal meter QHTP-2. The vertical profile of C n 2 in Hefei (0-30 km) is investigated by the analysis of experimental data. The average profile of C n 2 in Hefei exhibits conspicuous day and night differences with increased altitude. The distribution of log(C n 2 ) is nearly normal and has conspicuous seasonal differences.展开更多
In this work, the band structure and optical-related properties of CuIn0.5Ga0.5Se2 thin film are presented. The calculation is performed by the full-potential linearized augmented plane wave (FPLAPW) method. The spin-...In this work, the band structure and optical-related properties of CuIn0.5Ga0.5Se2 thin film are presented. The calculation is performed by the full-potential linearized augmented plane wave (FPLAPW) method. The spin-orbit coupling is considered. The result for the dielectric function is in good agreement with earlier experimental measurements and simulations. Based on the complex dielectric function, the dielectric constant, the absorption coefficient, the complex refractive index and the reflectivity at normal incidence are explored. We found that they are comparable with the earlier results.展开更多
在相距600 m 的两地进行了静态激光大气传输实验,并对接收到的光强和光束到达角起伏进行记录.以每10min 所记录的数据作为样本,计算出光强起伏方差和到达角起伏方差,并根据理论孔径平滑因子计算出点接收时的光强起伏方差,再分别根据光...在相距600 m 的两地进行了静态激光大气传输实验,并对接收到的光强和光束到达角起伏进行记录.以每10min 所记录的数据作为样本,计算出光强起伏方差和到达角起伏方差,并根据理论孔径平滑因子计算出点接收时的光强起伏方差,再分别根据光强起伏方差和到达角起伏方差计算出大气折射率结构常数.最后,得到一天之内大气折射率结构常数的变化曲线,并分析得出大气折射率结构常数在早晨和傍晚存在极小值.展开更多
基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云...基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云南大理综合探测试验数据的反演结果与探空数据进行比较分析,结果表明:WPR联合探空的温度廓线和起始边界比湿(q_0)反演大气比湿廓线,与探空大气比湿廓线相比具有相同的变化趋势,标准差为0.84 g·kg^(-1),误差随高度增加呈递增趋势;WPR联合RASS,GPS/PWV数据反演大气比湿廓线,与探空大气比湿廓线的标准差为0.85 g·kg^(-1)。参加反演的数据中,折射指数结构常数C_n^2与谱宽σ_(turb)~2对反演影响最大,反演算法中大气折射指数梯度M符号的判断对反演精度也有较大影响。展开更多
基金supported by the National High Technology Research and Development Program of China (GrantNo. 2011AA8061007)
文摘Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is actually the investigation of the atmospheric refractive index. The atmospheric structure constant of refractive index, C n 2 , is an important parameter denoting atmospheric turbulence. In this paper, C n 2 is measured during the day and at night and in all four seasons using a high sensitivity micro-thermal meter QHTP-2. The vertical profile of C n 2 in Hefei (0-30 km) is investigated by the analysis of experimental data. The average profile of C n 2 in Hefei exhibits conspicuous day and night differences with increased altitude. The distribution of log(C n 2 ) is nearly normal and has conspicuous seasonal differences.
文摘In this work, the band structure and optical-related properties of CuIn0.5Ga0.5Se2 thin film are presented. The calculation is performed by the full-potential linearized augmented plane wave (FPLAPW) method. The spin-orbit coupling is considered. The result for the dielectric function is in good agreement with earlier experimental measurements and simulations. Based on the complex dielectric function, the dielectric constant, the absorption coefficient, the complex refractive index and the reflectivity at normal incidence are explored. We found that they are comparable with the earlier results.
文摘在相距600 m 的两地进行了静态激光大气传输实验,并对接收到的光强和光束到达角起伏进行记录.以每10min 所记录的数据作为样本,计算出光强起伏方差和到达角起伏方差,并根据理论孔径平滑因子计算出点接收时的光强起伏方差,再分别根据光强起伏方差和到达角起伏方差计算出大气折射率结构常数.最后,得到一天之内大气折射率结构常数的变化曲线,并分析得出大气折射率结构常数在早晨和傍晚存在极小值.
文摘基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云南大理综合探测试验数据的反演结果与探空数据进行比较分析,结果表明:WPR联合探空的温度廓线和起始边界比湿(q_0)反演大气比湿廓线,与探空大气比湿廓线相比具有相同的变化趋势,标准差为0.84 g·kg^(-1),误差随高度增加呈递增趋势;WPR联合RASS,GPS/PWV数据反演大气比湿廓线,与探空大气比湿廓线的标准差为0.85 g·kg^(-1)。参加反演的数据中,折射指数结构常数C_n^2与谱宽σ_(turb)~2对反演影响最大,反演算法中大气折射指数梯度M符号的判断对反演精度也有较大影响。