The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified geneti...The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified genetic algorithm was presented. By means of the practical engineering, the modified genetic algorithm not only has more expedient convergence, but also can enhance security and operation efficiency.展开更多
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ...It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.展开更多
A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static met...A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions.展开更多
Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial...Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these devices.Considering the time-consuming transient simulation of unsteady pressure,a novel optimization strategy was proposed by discretizing design variables and genetic algorithm.Four highly related design parameters were chosen,and 40 transient sample cases were generated and simulated using an automatic program.70%of them were used for training the surrogate model,and the others were for verifying the accuracy of the surrogate model.Furthermore,a modified discrete genetic algorithm(MDGA)was proposed to reduce the optimization cost owing to transient numerical simulation.For the benchmark test,the proposed MDGA showed a great advantage over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables by dramatically increasing the convergence rate.After optimization,the performance and stability of the inline pump were improved.The efficiency increased by more than 2.2%,and the pressure fluctuation intensity decreased by more than 20%under design condition.This research proposed an optimization method for reducing discrete transient characteristics in centrifugal pumps.展开更多
In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding...In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.展开更多
In order to create low temperature environment for the valve testing,a new type of semiconductor refrigeration box based on semiconductor refrigeration chip and programmable logic controller(PLC)control system is desi...In order to create low temperature environment for the valve testing,a new type of semiconductor refrigeration box based on semiconductor refrigeration chip and programmable logic controller(PLC)control system is designed.The power of the semiconductor refrigeration chip is determined by calculating the heat dissipation characteristics of the semiconductor refrigeration box.Combining natural convection heat dissipation with forced air cooling,the heat sink of semiconductor refrigeration chip is designed.In the control strategy,switch control is combined with an intelligent control strategy.Adaptive single neuron optimization algorithm based on quadratic optimization is adopted to adjust and optimize the parameters of the proportional-integral-derivative(PID)controllers in real time.Taking into account the limited hardware capabilities of the PLC,the Jacobian information in parameter adjustment is redesigned into a simplified form of identification.The actual test results of refrigeration box show good control performance.展开更多
Some problems in the optimal topology design of structures with discrete variables are studied in this paper.The problem of a model of discrete optimization is discussed and a neglected fact that discrete optimum desi...Some problems in the optimal topology design of structures with discrete variables are studied in this paper.The problem of a model of discrete optimization is discussed and a neglected fact that discrete optimum design may be controlled by the discreteness of sizing variables and global con- straints is pointed out.A heuristic algorithm for solving discrete topology optimization problems of trusses and frames is proposed.展开更多
Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is...Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is a vital part in architecture design,architects often explore novel applications of their technologies for building structure innovation.However,such searches relied on experiences,expertise or gut feeling.In this paper,a new design method for the optimal building frame column design based on the genetic algorithm is proposed.First of all,in order to construct the optimal model of the building frame column,building units are divided into three categories in general:building bottom,main building and building roof.Secondly,the genetic algorithm is introduced to optimize the building frame column.In the meantime,a PGA-Skeleton based concurrent genetic algorithm design plan is proposed to improve the optimization efficiency of the genetic algorithm.Finally,effectiveness of the mentioned algorithm is verified through the simulation experiment.展开更多
Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in...Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in the wind turbines and eventually lead to an interruption to their electric power supply. To overcome and prevent these undesirable problems, structural design optimization of a small vertical axis wind turbine has performed, in this study, for seismic qualification and lightweight by using a Genetic Algorithm (GA) subject to some design constraints such as the maximum stress limit, maximum deformation limit, and seismic acceleration gain limit. Also, the structural design optimizations were conducted for the four different initial design variable sets to confirm robustness of the optimization algorithm used. As a result, all the optimization results for the 4 different initial designs showed good agreement with each other properly. Thus the structural design optimization of a small vertical-axis wind turbine could be successfully accomplished.展开更多
In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm opti...In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multilayer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality.展开更多
The metaheuristic algorithms are widely used in solving the parameters of the optimization problem.The marine predators algorithm(MPA)is a novel population-based intelligent algorithm.Although MPA has shown a talented...The metaheuristic algorithms are widely used in solving the parameters of the optimization problem.The marine predators algorithm(MPA)is a novel population-based intelligent algorithm.Although MPA has shown a talented foraging strategy,it still needs a balance of exploration and exploitation.Therefore,a multi-stage improvement of marine predators algorithm(MSMPA)is proposed in this paper.The algorithm retains the advantage of multistage search and introduces a linear flight strategy in the middle stage to enhance the interaction between predators.Predators further away from the historical optimum are required to move,increasing the exploration capability of the algorithm.In the middle and late stages,the searchmechanism of particle swarmoptimization(PSO)is inserted,which enhances the exploitation capability of the algorithm.This means that the stochasticity is decreased,that is the optimal region where predators jumping out is effectively stifled.At the same time,self-adjusting weight is used to regulate the convergence speed of the algorithm,which can balance the exploration and exploitation capability of the algorithm.The algorithm is applied to different types of CEC2017 benchmark test functions and threemultidimensional nonlinear structure design optimization problems,compared with other recent algorithms.The results show that the convergence speed and accuracy of MSMPA are significantly better than that of the comparison algorithms.展开更多
A more efficient method of locating the optimum of a second order response function was of interest in this work. In order to do this, the principles of optimal designs of experiment is invoked and used for this purpo...A more efficient method of locating the optimum of a second order response function was of interest in this work. In order to do this, the principles of optimal designs of experiment is invoked and used for this purpose. At the end, it was discovered that the noticeable pitfall in response surface methodology (RSM) was circumvented by this method as the step length was obtained by taking the derivative of the response function rather than doing so by intuition or trial and error as is the case in RSM. A numerical illustration shows that this method is suitable for obtaining the desired optimizer in just one move which compares favourably with other known methods such as Newton-Raphson method which requires more than one iteration to reach the optimizer.展开更多
The present study investigates computer-antomated design and structural optimization of concrete slab frame bridges considering investment cost based on a complete 3D model. Thus, a computer code with several modules ...The present study investigates computer-antomated design and structural optimization of concrete slab frame bridges considering investment cost based on a complete 3D model. Thus, a computer code with several modules has been developed to produce parametric models of slab frame bridges. Design loads and load combinations are based on the Eurocode design standard and the Swedish design standard for bridges. The necessary reinforcement diagrams to satisfy the ultimate and serviceability limit states, including fatigue checks for the whole bridge, are calculated according to the aforementioned standards. Optimization techniques based on the genetic algorithm and the pattern search method are applied. A case study is presented to highlight the efficiency of the applied optimization algorithms. This methodology has been applied in the design process for the time-effective, material-efficient, and optimal design of concrete slab frame bridges.展开更多
文摘The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified genetic algorithm was presented. By means of the practical engineering, the modified genetic algorithm not only has more expedient convergence, but also can enhance security and operation efficiency.
文摘It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.
基金Project supported by the National Natural Science Foundation of China (Nos. 10002005 and 10421002)the Natural Science Foundation of Tianjin (No.02360081)the Education Committee Foundation of Tianjin (No.20022104)the Program for Changjiang Scholars and Innovative Research Team in University of China and the 211 Foundation of Dalian University of Technology
文摘A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFC3202901)Natural Science Foundation of China(Grant No.51879121)+1 种基金Jiangsu Provincial Primary Research&Development Plan(Grant No.BE2019009-1)China Scholarship Council(Grant No.202108690020).
文摘Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these devices.Considering the time-consuming transient simulation of unsteady pressure,a novel optimization strategy was proposed by discretizing design variables and genetic algorithm.Four highly related design parameters were chosen,and 40 transient sample cases were generated and simulated using an automatic program.70%of them were used for training the surrogate model,and the others were for verifying the accuracy of the surrogate model.Furthermore,a modified discrete genetic algorithm(MDGA)was proposed to reduce the optimization cost owing to transient numerical simulation.For the benchmark test,the proposed MDGA showed a great advantage over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables by dramatically increasing the convergence rate.After optimization,the performance and stability of the inline pump were improved.The efficiency increased by more than 2.2%,and the pressure fluctuation intensity decreased by more than 20%under design condition.This research proposed an optimization method for reducing discrete transient characteristics in centrifugal pumps.
基金Supported by National Natural Science Foundation of China(Grant No.51275329)the Youth Fund Program of Taiyuan University of Science and Technology,China(Grant No.20113014)
文摘In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.
文摘In order to create low temperature environment for the valve testing,a new type of semiconductor refrigeration box based on semiconductor refrigeration chip and programmable logic controller(PLC)control system is designed.The power of the semiconductor refrigeration chip is determined by calculating the heat dissipation characteristics of the semiconductor refrigeration box.Combining natural convection heat dissipation with forced air cooling,the heat sink of semiconductor refrigeration chip is designed.In the control strategy,switch control is combined with an intelligent control strategy.Adaptive single neuron optimization algorithm based on quadratic optimization is adopted to adjust and optimize the parameters of the proportional-integral-derivative(PID)controllers in real time.Taking into account the limited hardware capabilities of the PLC,the Jacobian information in parameter adjustment is redesigned into a simplified form of identification.The actual test results of refrigeration box show good control performance.
文摘Some problems in the optimal topology design of structures with discrete variables are studied in this paper.The problem of a model of discrete optimization is discussed and a neglected fact that discrete optimum design may be controlled by the discreteness of sizing variables and global con- straints is pointed out.A heuristic algorithm for solving discrete topology optimization problems of trusses and frames is proposed.
文摘Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is a vital part in architecture design,architects often explore novel applications of their technologies for building structure innovation.However,such searches relied on experiences,expertise or gut feeling.In this paper,a new design method for the optimal building frame column design based on the genetic algorithm is proposed.First of all,in order to construct the optimal model of the building frame column,building units are divided into three categories in general:building bottom,main building and building roof.Secondly,the genetic algorithm is introduced to optimize the building frame column.In the meantime,a PGA-Skeleton based concurrent genetic algorithm design plan is proposed to improve the optimization efficiency of the genetic algorithm.Finally,effectiveness of the mentioned algorithm is verified through the simulation experiment.
文摘Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in the wind turbines and eventually lead to an interruption to their electric power supply. To overcome and prevent these undesirable problems, structural design optimization of a small vertical axis wind turbine has performed, in this study, for seismic qualification and lightweight by using a Genetic Algorithm (GA) subject to some design constraints such as the maximum stress limit, maximum deformation limit, and seismic acceleration gain limit. Also, the structural design optimizations were conducted for the four different initial design variable sets to confirm robustness of the optimization algorithm used. As a result, all the optimization results for the 4 different initial designs showed good agreement with each other properly. Thus the structural design optimization of a small vertical-axis wind turbine could be successfully accomplished.
文摘In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multilayer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality.
基金supported in part byNationalNatural Science Foundation of China(No.62066001)Natural Science Foundation of Ningxia Province(No.2021AAC03230)Program of Graduate Innovation Research of North Minzu University(No.YCX22111).
文摘The metaheuristic algorithms are widely used in solving the parameters of the optimization problem.The marine predators algorithm(MPA)is a novel population-based intelligent algorithm.Although MPA has shown a talented foraging strategy,it still needs a balance of exploration and exploitation.Therefore,a multi-stage improvement of marine predators algorithm(MSMPA)is proposed in this paper.The algorithm retains the advantage of multistage search and introduces a linear flight strategy in the middle stage to enhance the interaction between predators.Predators further away from the historical optimum are required to move,increasing the exploration capability of the algorithm.In the middle and late stages,the searchmechanism of particle swarmoptimization(PSO)is inserted,which enhances the exploitation capability of the algorithm.This means that the stochasticity is decreased,that is the optimal region where predators jumping out is effectively stifled.At the same time,self-adjusting weight is used to regulate the convergence speed of the algorithm,which can balance the exploration and exploitation capability of the algorithm.The algorithm is applied to different types of CEC2017 benchmark test functions and threemultidimensional nonlinear structure design optimization problems,compared with other recent algorithms.The results show that the convergence speed and accuracy of MSMPA are significantly better than that of the comparison algorithms.
文摘A more efficient method of locating the optimum of a second order response function was of interest in this work. In order to do this, the principles of optimal designs of experiment is invoked and used for this purpose. At the end, it was discovered that the noticeable pitfall in response surface methodology (RSM) was circumvented by this method as the step length was obtained by taking the derivative of the response function rather than doing so by intuition or trial and error as is the case in RSM. A numerical illustration shows that this method is suitable for obtaining the desired optimizer in just one move which compares favourably with other known methods such as Newton-Raphson method which requires more than one iteration to reach the optimizer.
文摘The present study investigates computer-antomated design and structural optimization of concrete slab frame bridges considering investment cost based on a complete 3D model. Thus, a computer code with several modules has been developed to produce parametric models of slab frame bridges. Design loads and load combinations are based on the Eurocode design standard and the Swedish design standard for bridges. The necessary reinforcement diagrams to satisfy the ultimate and serviceability limit states, including fatigue checks for the whole bridge, are calculated according to the aforementioned standards. Optimization techniques based on the genetic algorithm and the pattern search method are applied. A case study is presented to highlight the efficiency of the applied optimization algorithms. This methodology has been applied in the design process for the time-effective, material-efficient, and optimal design of concrete slab frame bridges.