The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process.The method has been widely used in seismic design and other related...The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process.The method has been widely used in seismic design and other related scientific research;however,the influence of different soil-structure flexibility ratios on the accuracy of this method is still not well understood.In this study,we select the cross-section structures beneath the Daikai subway station as the research object and establish 12 finite element analysis models with different soil-structure flexibility ratios using ABAQUS.All models are computed by the dynamic time-history method or the pushover method.Furthermore,the dynamic time-history solution result is taken as the standard solution,and the precision and application of the pushover analysis method are discussed based on the parameters of peak interlayer displacement and peak internal force of the middle column section.The results show that the soil-structure flexibility ratio has a significant influence on the calculation accuracy of the pushover method,and the calculation accuracy of this method is the most ideal when the soil-structure flexibility is equal to 1.The research results can provide significant references for the seismic design of underground structures or the improvement of simplified seismic analysis methods.展开更多
In the present study,the formula calculating ship impact forces on light wharf structures is presented when the elastic deformation of the hull and the pier structures as well as the nonlinear deformation of the fende...In the present study,the formula calculating ship impact forces on light wharf structures is presented when the elastic deformation of the hull and the pier structures as well as the nonlinear deformation of the fender are taken into account. The ship impact forces are statistically analyzed with the Monte-Carlo method according to the known probability distribution types of random variables.Based on the simulated results, the distribution of ship impact forces which is characterized by bimodal distribution can be expressed as the combining probability density function of beta distribution and normal distribution. The corresponding parameters of the probability density function can be estimated with the maximum likelihood method. The results show that ship impact forces on light wharf structures follow the distribution of type I extreme value.The mean coefficient and variation coefficient are 1.11 and 0.008 respectively during 50 years of design reference period.展开更多
As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an impor...As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.展开更多
The local joint flexibility matrix of multibrace tubular joints (uniplanar and multiplanar joints) is defined. The formulation for computing the elements of local flexibility factor matrix of multibrace tubular joints...The local joint flexibility matrix of multibrace tubular joints (uniplanar and multiplanar joints) is defined. The formulation for computing the elements of local flexibility factor matrix of multibrace tubular joints by semi-analytic method is presented in this paper. The stiffening effect of unloaded braces and cross-flexibility between braces are discussed. Using the local flexibility of unibrace joints instead of that of multibrace joints in conventional structural analysis will lead the result to an unsafe side.展开更多
The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This m...The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This multidisciplinary field known as FSI has been expanded to engineering fields such as offshore structures, tall slender structures and other flexible structures applications. The motivation of this paper is to investigate the numerical model of two-way coupling FSI partitioned flexible plate structure under fluid flow. The adopted partitioned method and approach utilized the advantage of the existing numerical algorithms in solving the two-way coupling fluid and structural interactions. The flexible plate was subjected to a fluid flow which causes large deformation on the fluid domain from the oscillation of the flexible plate. Both fluid and flexible plate are subjected to the interaction of load transfer within two physics by using the strong and weak coupling methods of MFS and Load Transfer Physics Environment, respectively. The oscillation and deformation results have been validated which demonstrate the reliability of both strong and weak method in resolving the two-way coupling problem in contribution of knowledge to the feasibility field study of ocean engineering and civil engineering.展开更多
The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according...The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.展开更多
Making use of modal characteristics of the natural vibration of flexible structure to design the oscillating wing aircraft is proposed. A series of equations concerning the oscillating wing of flexible structures are ...Making use of modal characteristics of the natural vibration of flexible structure to design the oscillating wing aircraft is proposed. A series of equations concerning the oscillating wing of flexible structures are derived. The kinetic equation for aerodynamic force coupled with elastic movement is set up, and relevant formulae are derived. The unsteady aerodynamic one in that formulae is revised. The design principle, design process and range of application of such oscillating wing analytical method are elaborated. A flexible structural oscillating wing model is set up, and relevant time response analysis and frequency response analysis are conducted. The analytical results indicate that adopting the new-type driving way for the oscillating wing will not have flutter problems and will be able to produce propulsive force. Furthermore, it will consume much less power than the fixed wing for generating the same lift.展开更多
Exploring new abnormal thermal expansion materials is important to understand the nature of thermal expansion.Metal-organic framework(MOF)with unique structure flexibility is an ideal material to study the thermal exp...Exploring new abnormal thermal expansion materials is important to understand the nature of thermal expansion.Metal-organic framework(MOF)with unique structure flexibility is an ideal material to study the thermal expansion.This work adopts the high-resolution variable-temperature powder x-ray diffraction to investigate the structure and intrinsic thermal expansion in Sr-MOF([Sr(DMPhH_(2)IDC)_(2)]_n).It has the unique honeycomb structure with one-dimensional(1 D)channels along the c-axis direction,the a-b plane displays layer structure.The thermal expansion behavior has strong relationship with the structure,ZTE appears in the a-b plane and large PTE along the c-axis direction.The possible mechanism is that the a/b layers have enough space for the transverse thermal vibration of polydentate ligands,while along the c-axis direction is not.This work not only reports one interesting zero thermal expansion material,but also provides new understanding for thermal expansion mechanism from the perspective of the structural model.展开更多
In the dynamic characteristic experiment of magnetorheological( MR) damper, a strange feature which the improved Bouc-Wen model based on tanh function cannot accurately describe has been shown when MR damper is revers...In the dynamic characteristic experiment of magnetorheological( MR) damper, a strange feature which the improved Bouc-Wen model based on tanh function cannot accurately describe has been shown when MR damper is reversing or at a low speed. In order to describe this phenomenon,a new mechanicaldelay dynamic model based on the improved Bouc-Wen model has been proposed for MR damper. This new model comprehensively considers the coupling effect on the structural flexibility of MR damper and the MR effect of MR fluid. The identification results show that the new mechanical-delay dynamic model for MR damper has a good coherence with experiment whenever at low or high speed.展开更多
The cow-nosed ray is studied as natural sample of a flapping-foil robotic fish.Body structure, motion discipline, and dynamicfoil deformation of cow-nosed ray are analyzed.Based on the analysis results, a robotic fish...The cow-nosed ray is studied as natural sample of a flapping-foil robotic fish.Body structure, motion discipline, and dynamicfoil deformation of cow-nosed ray are analyzed.Based on the analysis results, a robotic fish imitating cow-nosed ray,named Robo-ray Ⅱ, mainly composed of soft body, flexible ribs and pneumatic artificial muscles, is developed.Structure andswimming morphology of the robotic prototype are as that of a normal cow-nosed ray in nature.Key propulsion parameters ofRobo-ray Ⅱ at normal conditions, including the St Number at linear swimming, thrust coefficient at towing are studied throughexperiments.The suitable driving parameters are confirmed considering the efficiency and swimming velocity.Swimmingvelocity of 0.16 m·s’and thrust coefficient of 0.56 in maximum are achieved in experiments.展开更多
This paper is devoted to study the application of the decentralized sliding mode control method, which is used to reduce the vibration of large spacecraft flexible appendage. In the process of control design, the slid...This paper is devoted to study the application of the decentralized sliding mode control method, which is used to reduce the vibration of large spacecraft flexible appendage. In the process of control design, the sliding surface of sliding mode control is determined by minimizing the optimal cost function, and the controller is the saturation controller. The controlled structure is subject to arbitrary, unmeasurable and uncertainty disturbance forces and initial displacement. The decentralized control method and the centralized control method are used to control vibration of the structure respectively. When the system is subjected to the initial displacement or external disturbance, the computer simulation shows that both of these control methods perform effectively, but the number of Riccati equation of the decentralized method is far smaller than that of centralized control method, especially in a large system.展开更多
The organometal halide perovskite materials have a blend of surprising optoelectronic properties, for example high value of absorption coefficient and abrupt optical retention edge, lifetime, long charge carrier diffu...The organometal halide perovskite materials have a blend of surprising optoelectronic properties, for example high value of absorption coefficient and abrupt optical retention edge, lifetime, long charge carrier diffusion length and many more. Brought in conjunction with the capacity for manufacturing at low temperature, likewise from the solution, devices based on perovskite, particularly solar cells have been contemplated seriously with striking advancements in performance, in the course of recent years. The amalgamation of minimal effort, high efficiency and extra applications gives incredible potential to commercialization of these cells. The applications and performance of perovskite cells frequently relate with the structures of the device. Numerous creative structures of the devices were produced, targeting for vast scale manufacture, diminishing creation cost, upgrading the PCE and subsequently expanding the prospective for future applications. This paper outlines the various advanced structures of PSC, challenges confronted by these PSCs and their future perspectives. The commercial applications of PSC are additionally talked about in this paper.展开更多
The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flex...The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flexible wings under passive actuation.However,the unsteady aerodynamic characteristics with the fluid-structure interaction effects in the multi-body active actuation process of morphing airfoil deserve further investigation.In this paper,a fluid-structure coupled simulation method for multi-body flexible morphing airfoil with active actuation subsystem was investigated,and the aerodynamic characteristics during deformation were compared with different skin flexibility,flow field environment,actuation mode and actuation time.The numerical results show that for the steady aerodynamic,the skin flexibility can improve the stability efficiency.In the unsteady process,the change trend of the transient lift coefficient and pitching moment are consistent with those of the active drive characteristics,while the instantaneous lift-drag ratio coefficient is greatly affected by the driving mode and can be improved by increasing the driving duration.展开更多
Electrochemical batteries and supercapacitors are considered ideal rechargeable technologies for next-generation energy storage systems.The key to further commercial applications of electrochemical energy storage devi...Electrochemical batteries and supercapacitors are considered ideal rechargeable technologies for next-generation energy storage systems.The key to further commercial applications of electrochemical energy storage devices is the design and investigation of electrode materials with high energy density and significant cycling stability.Recently,amorphous materials have attracted a lot of attention due to their more defects and structure flexibility,opening up a new way for electrochemical energy storage.In this perspective,we summarize the recent research regarding amorphous materials for electrochemical energy storage.This review covers the advantages and features of amorphous materials,the synthesis strategies to prepare amorphous materials,as well as the application and modification of amorphous electrodes in energy storage fields.Finally,the challenges and prospective remarks for future development in amorphous materials for electrochemical energy storage are concluded.展开更多
A new quantitative concept is introduced in this paper, which may be used to facilitate the measurement of the controllability of a subspace similar to subspace controllability degree. Then the concrete form of the su...A new quantitative concept is introduced in this paper, which may be used to facilitate the measurement of the controllability of a subspace similar to subspace controllability degree. Then the concrete form of the subspace controllability degree of a flexible structure is derived, and the errors of subspace controllability degree and dynamical response caused by the substitution of a repeated mode subspace for a closely spaced mode subspace are discussed. All the results show that this substitution is rational under some conditions.展开更多
A dual-band flexible frequency selective surface (FSS) with miniaturized elements and maximally flat (Butterworth) response is presented in this paper. It is composed of three metallic layers, which are fabricated...A dual-band flexible frequency selective surface (FSS) with miniaturized elements and maximally flat (Butterworth) response is presented in this paper. It is composed of three metallic layers, which are fabricated on thin flexible polyimide substrates and bonded together using thin bonding films. The overall thickness of the proposed structure is only about 0.3 mm, making it an attractive choice for conformal FSS applications. All the three layers can constitute a miniaturized- element FSS (MEFSS) and produce the first pass-band with miniaturization property, while the up and bottom layers can constitute a symmetric biplanar FSS and produce the second pass-band with maximally fiat (Butterworth) response. The two pass-bands are independent and there is a wide band spacing up to 30 GHz between them. The principles of operation, the simulated results by using the vector modal matching method, and the experimental values of the fabricated prototype are also presented and discussed.展开更多
Hydrodynamic characteristics of a biplane-type otter board,equipped with nylon canvas of 2 mm in thickness was investigated through flume-tank experiment in this study.A series of predesigned structures with different...Hydrodynamic characteristics of a biplane-type otter board,equipped with nylon canvas of 2 mm in thickness was investigated through flume-tank experiment in this study.A series of predesigned structures with different gap-chord ratios G/c(0.75,0.90,1.05),stagger anglesθ(30°,45°,60°),and proportions of flexible area relative to the whole wing areaƒr(0,55%,65%,75%),at an aspect ratio of 2.0 and a camber ratio of 15%,were experimentally carried out.The results showed the solution referring to the usage of flexible canvas replacing part of rigid structure for the biplane-type otter board was efficient for the trawling in the middle or shallow water area.The improvement of lift and stability for the biplane-type otter board was concluded,and drag of the structure was reduced by 1.9%atƒr=55%.In addition,the coefficient of variation of the lift and drag coefficient at different current velocities were 2.69%and 2.28%,respectively,which was smaller than those at relatively large proportion of the flexible area.Compared with the other tested structures,the frame-type flexible structure with the gap-chord ratio of 0.9 and a stagger angle of 45°and the proportion of the flexible area of 55%,performed best,and its drag was reduced by 5.72%and lift increased by 4.8%,compared with the rigid biplane-type otter board at the angles of attack from 18°to 28°.展开更多
The principles and methods of active vibration control on a flexible cantilever beam using piezoelectric patches as actuators is studied. Active control of the first two modes of the flexible can- tilever beam is impl...The principles and methods of active vibration control on a flexible cantilever beam using piezoelectric patches as actuators is studied. Active control of the first two modes of the flexible can- tilever beam is implemented based on the independent modal control law. Experimental results show that the structural damping of the flexible cantilever beam is effectively improved and an excellent degree of vibration suppression is achieved with the active vibration control strategy.展开更多
A decentralized variable-structure robust control technique for uncertain large-scale systems is proposed and using the proposed technique. a decentralized robust control system for uncertain flexible space station is...A decentralized variable-structure robust control technique for uncertain large-scale systems is proposed and using the proposed technique. a decentralized robust control system for uncertain flexible space station is designed. The designed robust control system can guarantee the stability and safe operation of space station in a wide range of system parameters variations and highly intensive external disturbances. In addition. because decentralized adaptation laws for the upper bounds of system uncertainties are introduced, the control technique is particularly applicable to the uncertain flexible space station with complex structure whose bounds of system uncertainties can not be determined or vary with time.展开更多
基金sponsored by the National Natural Science Foundation of China(52008206)the China Postdoctoral Science Foundation(2021M690279)。
文摘The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process.The method has been widely used in seismic design and other related scientific research;however,the influence of different soil-structure flexibility ratios on the accuracy of this method is still not well understood.In this study,we select the cross-section structures beneath the Daikai subway station as the research object and establish 12 finite element analysis models with different soil-structure flexibility ratios using ABAQUS.All models are computed by the dynamic time-history method or the pushover method.Furthermore,the dynamic time-history solution result is taken as the standard solution,and the precision and application of the pushover analysis method are discussed based on the parameters of peak interlayer displacement and peak internal force of the middle column section.The results show that the soil-structure flexibility ratio has a significant influence on the calculation accuracy of the pushover method,and the calculation accuracy of this method is the most ideal when the soil-structure flexibility is equal to 1.The research results can provide significant references for the seismic design of underground structures or the improvement of simplified seismic analysis methods.
基金supported by National Natural Science Foundation of China(61125306,91016004)Foundation of Ministry of Education of China(20110092110020,20120092110026)the Post-Doctoral Research Funds(1108000137,3208004602)
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2007AA11Z130)
文摘In the present study,the formula calculating ship impact forces on light wharf structures is presented when the elastic deformation of the hull and the pier structures as well as the nonlinear deformation of the fender are taken into account. The ship impact forces are statistically analyzed with the Monte-Carlo method according to the known probability distribution types of random variables.Based on the simulated results, the distribution of ship impact forces which is characterized by bimodal distribution can be expressed as the combining probability density function of beta distribution and normal distribution. The corresponding parameters of the probability density function can be estimated with the maximum likelihood method. The results show that ship impact forces on light wharf structures follow the distribution of type I extreme value.The mean coefficient and variation coefficient are 1.11 and 0.008 respectively during 50 years of design reference period.
基金supported by the National Natural Science Foundation of China (10732050)Tsinghua University (2009THZ02122)the National Basic Research Program of China (973) (2010CB631005)
文摘As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.
文摘The local joint flexibility matrix of multibrace tubular joints (uniplanar and multiplanar joints) is defined. The formulation for computing the elements of local flexibility factor matrix of multibrace tubular joints by semi-analytic method is presented in this paper. The stiffening effect of unloaded braces and cross-flexibility between braces are discussed. Using the local flexibility of unibrace joints instead of that of multibrace joints in conventional structural analysis will lead the result to an unsafe side.
文摘The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This multidisciplinary field known as FSI has been expanded to engineering fields such as offshore structures, tall slender structures and other flexible structures applications. The motivation of this paper is to investigate the numerical model of two-way coupling FSI partitioned flexible plate structure under fluid flow. The adopted partitioned method and approach utilized the advantage of the existing numerical algorithms in solving the two-way coupling fluid and structural interactions. The flexible plate was subjected to a fluid flow which causes large deformation on the fluid domain from the oscillation of the flexible plate. Both fluid and flexible plate are subjected to the interaction of load transfer within two physics by using the strong and weak coupling methods of MFS and Load Transfer Physics Environment, respectively. The oscillation and deformation results have been validated which demonstrate the reliability of both strong and weak method in resolving the two-way coupling problem in contribution of knowledge to the feasibility field study of ocean engineering and civil engineering.
文摘The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.
基金National Natural Science Foundation of China(10432040, 90716006)
文摘Making use of modal characteristics of the natural vibration of flexible structure to design the oscillating wing aircraft is proposed. A series of equations concerning the oscillating wing of flexible structures are derived. The kinetic equation for aerodynamic force coupled with elastic movement is set up, and relevant formulae are derived. The unsteady aerodynamic one in that formulae is revised. The design principle, design process and range of application of such oscillating wing analytical method are elaborated. A flexible structural oscillating wing model is set up, and relevant time response analysis and frequency response analysis are conducted. The analytical results indicate that adopting the new-type driving way for the oscillating wing will not have flutter problems and will be able to produce propulsive force. Furthermore, it will consume much less power than the fixed wing for generating the same lift.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.22071221 and 21905252)the Natural Science Foundation of Henan Province,China(Grant No.212300410086)。
文摘Exploring new abnormal thermal expansion materials is important to understand the nature of thermal expansion.Metal-organic framework(MOF)with unique structure flexibility is an ideal material to study the thermal expansion.This work adopts the high-resolution variable-temperature powder x-ray diffraction to investigate the structure and intrinsic thermal expansion in Sr-MOF([Sr(DMPhH_(2)IDC)_(2)]_n).It has the unique honeycomb structure with one-dimensional(1 D)channels along the c-axis direction,the a-b plane displays layer structure.The thermal expansion behavior has strong relationship with the structure,ZTE appears in the a-b plane and large PTE along the c-axis direction.The possible mechanism is that the a/b layers have enough space for the transverse thermal vibration of polydentate ligands,while along the c-axis direction is not.This work not only reports one interesting zero thermal expansion material,but also provides new understanding for thermal expansion mechanism from the perspective of the structural model.
基金National Natural Science Foundations of China(Nos.10972065,11372083)
文摘In the dynamic characteristic experiment of magnetorheological( MR) damper, a strange feature which the improved Bouc-Wen model based on tanh function cannot accurately describe has been shown when MR damper is reversing or at a low speed. In order to describe this phenomenon,a new mechanicaldelay dynamic model based on the improved Bouc-Wen model has been proposed for MR damper. This new model comprehensively considers the coupling effect on the structural flexibility of MR damper and the MR effect of MR fluid. The identification results show that the new mechanical-delay dynamic model for MR damper has a good coherence with experiment whenever at low or high speed.
基金supported by the National High Technology Research and Development Program of China(863 Program)Program for New Century Excellent Talents in University
文摘The cow-nosed ray is studied as natural sample of a flapping-foil robotic fish.Body structure, motion discipline, and dynamicfoil deformation of cow-nosed ray are analyzed.Based on the analysis results, a robotic fish imitating cow-nosed ray,named Robo-ray Ⅱ, mainly composed of soft body, flexible ribs and pneumatic artificial muscles, is developed.Structure andswimming morphology of the robotic prototype are as that of a normal cow-nosed ray in nature.Key propulsion parameters ofRobo-ray Ⅱ at normal conditions, including the St Number at linear swimming, thrust coefficient at towing are studied throughexperiments.The suitable driving parameters are confirmed considering the efficiency and swimming velocity.Swimmingvelocity of 0.16 m·s’and thrust coefficient of 0.56 in maximum are achieved in experiments.
文摘This paper is devoted to study the application of the decentralized sliding mode control method, which is used to reduce the vibration of large spacecraft flexible appendage. In the process of control design, the sliding surface of sliding mode control is determined by minimizing the optimal cost function, and the controller is the saturation controller. The controlled structure is subject to arbitrary, unmeasurable and uncertainty disturbance forces and initial displacement. The decentralized control method and the centralized control method are used to control vibration of the structure respectively. When the system is subjected to the initial displacement or external disturbance, the computer simulation shows that both of these control methods perform effectively, but the number of Riccati equation of the decentralized method is far smaller than that of centralized control method, especially in a large system.
文摘The organometal halide perovskite materials have a blend of surprising optoelectronic properties, for example high value of absorption coefficient and abrupt optical retention edge, lifetime, long charge carrier diffusion length and many more. Brought in conjunction with the capacity for manufacturing at low temperature, likewise from the solution, devices based on perovskite, particularly solar cells have been contemplated seriously with striking advancements in performance, in the course of recent years. The amalgamation of minimal effort, high efficiency and extra applications gives incredible potential to commercialization of these cells. The applications and performance of perovskite cells frequently relate with the structures of the device. Numerous creative structures of the devices were produced, targeting for vast scale manufacture, diminishing creation cost, upgrading the PCE and subsequently expanding the prospective for future applications. This paper outlines the various advanced structures of PSC, challenges confronted by these PSCs and their future perspectives. The commercial applications of PSC are additionally talked about in this paper.
基金supported by the National Natural Science Foundation of China(Nos.52192633,11872293)the Natural Science Foundation of Shaanxi Province,China(No.2022JC-03)。
文摘The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flexible wings under passive actuation.However,the unsteady aerodynamic characteristics with the fluid-structure interaction effects in the multi-body active actuation process of morphing airfoil deserve further investigation.In this paper,a fluid-structure coupled simulation method for multi-body flexible morphing airfoil with active actuation subsystem was investigated,and the aerodynamic characteristics during deformation were compared with different skin flexibility,flow field environment,actuation mode and actuation time.The numerical results show that for the steady aerodynamic,the skin flexibility can improve the stability efficiency.In the unsteady process,the change trend of the transient lift coefficient and pitching moment are consistent with those of the active drive characteristics,while the instantaneous lift-drag ratio coefficient is greatly affected by the driving mode and can be improved by increasing the driving duration.
基金supported by National Natural Science Foundation of China(Grant Nos.52122702 and 52277215)Natural Science Foundation of Heilongjiang Province of China(No.JQ2021E005).
文摘Electrochemical batteries and supercapacitors are considered ideal rechargeable technologies for next-generation energy storage systems.The key to further commercial applications of electrochemical energy storage devices is the design and investigation of electrode materials with high energy density and significant cycling stability.Recently,amorphous materials have attracted a lot of attention due to their more defects and structure flexibility,opening up a new way for electrochemical energy storage.In this perspective,we summarize the recent research regarding amorphous materials for electrochemical energy storage.This review covers the advantages and features of amorphous materials,the synthesis strategies to prepare amorphous materials,as well as the application and modification of amorphous electrodes in energy storage fields.Finally,the challenges and prospective remarks for future development in amorphous materials for electrochemical energy storage are concluded.
基金The project supported by the National Natural Science Foundation of Chinathe Doctoral Research Foundation of Chinese Ministry of Education.
文摘A new quantitative concept is introduced in this paper, which may be used to facilitate the measurement of the controllability of a subspace similar to subspace controllability degree. Then the concrete form of the subspace controllability degree of a flexible structure is derived, and the errors of subspace controllability degree and dynamical response caused by the substitution of a repeated mode subspace for a closely spaced mode subspace are discussed. All the results show that this substitution is rational under some conditions.
基金Project supported by the Third Innovation Fund of Changchun Institute of Optics and Fine Mechanics and Physics(Grant No.093Y32J090)
文摘A dual-band flexible frequency selective surface (FSS) with miniaturized elements and maximally flat (Butterworth) response is presented in this paper. It is composed of three metallic layers, which are fabricated on thin flexible polyimide substrates and bonded together using thin bonding films. The overall thickness of the proposed structure is only about 0.3 mm, making it an attractive choice for conformal FSS applications. All the three layers can constitute a miniaturized- element FSS (MEFSS) and produce the first pass-band with miniaturization property, while the up and bottom layers can constitute a symmetric biplanar FSS and produce the second pass-band with maximally fiat (Butterworth) response. The two pass-bands are independent and there is a wide band spacing up to 30 GHz between them. The principles of operation, the simulated results by using the vector modal matching method, and the experimental values of the fabricated prototype are also presented and discussed.
基金supported by the Zhejiang Provincial Key Research and Development Program of China(Grant No.2018C02040).
文摘Hydrodynamic characteristics of a biplane-type otter board,equipped with nylon canvas of 2 mm in thickness was investigated through flume-tank experiment in this study.A series of predesigned structures with different gap-chord ratios G/c(0.75,0.90,1.05),stagger anglesθ(30°,45°,60°),and proportions of flexible area relative to the whole wing areaƒr(0,55%,65%,75%),at an aspect ratio of 2.0 and a camber ratio of 15%,were experimentally carried out.The results showed the solution referring to the usage of flexible canvas replacing part of rigid structure for the biplane-type otter board was efficient for the trawling in the middle or shallow water area.The improvement of lift and stability for the biplane-type otter board was concluded,and drag of the structure was reduced by 1.9%atƒr=55%.In addition,the coefficient of variation of the lift and drag coefficient at different current velocities were 2.69%and 2.28%,respectively,which was smaller than those at relatively large proportion of the flexible area.Compared with the other tested structures,the frame-type flexible structure with the gap-chord ratio of 0.9 and a stagger angle of 45°and the proportion of the flexible area of 55%,performed best,and its drag was reduced by 5.72%and lift increased by 4.8%,compared with the rigid biplane-type otter board at the angles of attack from 18°to 28°.
基金Supported by the National Natural Science Foundation of China (11172026)
文摘The principles and methods of active vibration control on a flexible cantilever beam using piezoelectric patches as actuators is studied. Active control of the first two modes of the flexible can- tilever beam is implemented based on the independent modal control law. Experimental results show that the structural damping of the flexible cantilever beam is effectively improved and an excellent degree of vibration suppression is achieved with the active vibration control strategy.
文摘A decentralized variable-structure robust control technique for uncertain large-scale systems is proposed and using the proposed technique. a decentralized robust control system for uncertain flexible space station is designed. The designed robust control system can guarantee the stability and safe operation of space station in a wide range of system parameters variations and highly intensive external disturbances. In addition. because decentralized adaptation laws for the upper bounds of system uncertainties are introduced, the control technique is particularly applicable to the uncertain flexible space station with complex structure whose bounds of system uncertainties can not be determined or vary with time.