Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic c...Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.展开更多
We perform systematic thermal conductivity measurements on heavily hole-doped Ba1-xKxFe2As2 single crystals with 0.747 ≤ x ≤ 0.974. At x=0.747, the K0/T is negligible, indicating a nodeless superconducting gap. A sm...We perform systematic thermal conductivity measurements on heavily hole-doped Ba1-xKxFe2As2 single crystals with 0.747 ≤ x ≤ 0.974. At x=0.747, the K0/T is negligible, indicating a nodeless superconducting gap. A small residual linear term K0/T (=0.035 m W.K-2 cm-1) appears at xz0.826, and it increases slowly up to x=0.974, followed by a substantial increase of more than 20 times to of K0/T clearly shows that the nodal gap appears near x surface topology. The small values of K0/T from x=0.826 the pure KFe2As2 (x=1.0). This doping dependence = 0.8, possibly associated with the change of Fermi to 0.974 are consistent with the Y-shaped nodal s- wave gap recently revealed by angle-resolved photoemission spectroscopy experiments at x=0.9. Furthermore, the substantial increase of K0/T from x=0.974 to 1.0 is inconsistent with a symmetry-imposed d-wave gap in KFe2 As2, and a possible nodal gap structure in KFe2As2 is discussed.展开更多
The frequency down-conversion of one-dimensional photonic crystals with the coupled cavity structure is investigated by the nonlinear finite-difference time-domain method. The efficient frequency conversion is obtaine...The frequency down-conversion of one-dimensional photonic crystals with the coupled cavity structure is investigated by the nonlinear finite-difference time-domain method. The efficient frequency conversion is obtained by utilizing the advantages of the broad eigenfrequency band, the strong localization and the Bloch phase matching of the coupled cavity structure. More importantly, the signal frequency could be tuned continuously within the whole band of the coupled cavity structure (with a bandwidth to central frequency ratio of 5.4%), and the gains are homogeneous in the band.展开更多
Six circularly polarized patch antennas with electromagnetic band gap(EBG)arranged at different locations were studied.These EBG antennas were compared in terms of impedance bandwidth,axial ratio(AR)bandwidth and ...Six circularly polarized patch antennas with electromagnetic band gap(EBG)arranged at different locations were studied.These EBG antennas were compared in terms of impedance bandwidth,axial ratio(AR)bandwidth and radiation patterns.When the EBG cells were placed closer to the edge of the substrate,the EBG antenna had a larger front radiation and a narrower bandwidth.Integrating the EBG cells closer to the center of the patch resulted in a wider impedance bandwidth,a wider axial ratio bandwidth and a decreased front gain.展开更多
Two new quaternary rare-earth chalcogenides,Al_(0.42)Sm_3(Si_(0.74)Al_(0.26))S_7(1) and Al_(0.38)Gd_3(Si_(0.86)Al_(0.14))S_7(2),have been synthesized by a facile solid-state route with boron as the...Two new quaternary rare-earth chalcogenides,Al_(0.42)Sm_3(Si_(0.74)Al_(0.26))S_7(1) and Al_(0.38)Gd_3(Si_(0.86)Al_(0.14))S_7(2),have been synthesized by a facile solid-state route with boron as the reducing reagent.They crystallize in the noncentrosymmetric hexagonal space group P6_3,belonging to the Ce_6Al_(3.33)S_(14) structure-type.Their 3-D structures feature 3-D frameworks constructed by RES_8 bicapped trigonal prisms,and Al and Si occupy the octahedral and tetrahedral voids,respectively.Al(2) and Si(1) co-occupying the 2b site and Al(1) partially occupying the 2a site have to be considered for the stability of the structures and charge balances.The Ce_6Al_(3.33)S_(14) structure-type compounds with their rich compositions and traits are discussed.The diffuse reflectance spectrum measurement of 2 indicates that it has an energy gap of 2.13 eV.展开更多
A new zero-dimensional(0D) thioborate Ba_9B_3GaS_(15) has been discovered by conventional high-temperature solid-state reaction. The compound crystallizes in orthorhombic space group Pbca with a = 8.4759(8),b = ...A new zero-dimensional(0D) thioborate Ba_9B_3GaS_(15) has been discovered by conventional high-temperature solid-state reaction. The compound crystallizes in orthorhombic space group Pbca with a = 8.4759(8),b = 22.266(2),c = 31.426(3) ?,V = 5931(2) ?~3,Z = 8,Mr = 1819.11,Dc = 4.075 g/cm3,μ = 13.684 mm^(-1),F(000) = 6320,S = 1.034,(Δρ)max = 5.039,(Δρ)min = –5.409 e/?~3,the final R = 0.0362 and w R = 0.1053 for 19243 observed reflections with I 〉 2σ(I). The structure is constructed by discrete [BS_3]^(3–) trigonal planes and isolated [GaS_4]^(5–) tetrahedra with Ba^(2+) and isolated S^(2–) filled among them. The UV-Vis-near-IR spectrum reveals a wide band gap of 3.15 eV that agrees with the electronic structure calculation.展开更多
A novel ternary rare-earth sulfide, CsYb7S(11), has been successfully synthesized by high-temperature solid-state reaction of an elemental mixture with modified Cs Cl flux. The single-crystal X-ray diffraction data ...A novel ternary rare-earth sulfide, CsYb7S(11), has been successfully synthesized by high-temperature solid-state reaction of an elemental mixture with modified Cs Cl flux. The single-crystal X-ray diffraction data reveal its orthorhombic symmetry in space group Cmca(no. 64) with a = 15.271(3), b = 13.414(2), c = 18.869(3) A°, V = 3865.2(2) A°^3, Z = 8, Mr = 1696.85, Dc = 5.832 g/cm^3, μ = 36.538 mm^-1, F(000) = 5768, the final R = 0.0225 and w R = 0.0517 for 2258 observed reflections with I 〉 2σ(I), 2.67〈θ〈27.48o, w = 1/[σ^2(Fo^2) +(0.0443 P)2 + 8.7453 P], where P =(Fo^2 + 2Fc^2)/3, S = 1.036,(Δρ)max = 1.609 and(Δρ)min = –1.922. The remarkable structural feature is the dual tricapped Cs2@S18 cube closed cavities far apart within the three-dimensional [Yb7S(11)]-covalent bonding matrix. Magnetic susceptibility measurements show that the title compound exhibits temperature-dependent(50~300 K) para-magnetism and obey the Curie-Weiss law. Moreover, the optical gap of 2.03 Ev for CsYb7S11 was deduced from the UV/Vis reflectance spectroscopy and DFT study indicates an indirect band gap with an electronic transfer excitation of S-3p to Yb-5d orbital.展开更多
Band gap characteristics of the photonic crystals in terahertz range with square lattice and triangular lattice of GaAs cylinders are comparatively studied by means of plane wave method (PWM). The influence of the r...Band gap characteristics of the photonic crystals in terahertz range with square lattice and triangular lattice of GaAs cylinders are comparatively studied by means of plane wave method (PWM). The influence of the radius on the band gap width is analyzed and the critical values where the band gap appears are put forward. The results show that the maximum band gap width of photonic crystal with triangular lattice of GaAs cylinders is much wider than that of photonic crystal with square lattice. The research provides a theoretic basis for the development of terahertz (THz) devices.展开更多
Two types of dual periodic circuits are introduced. The distributions of passbands and stopbands are generated from their dispersion relationships. Based on the study, Brillouin diagrams of three representative specia...Two types of dual periodic circuits are introduced. The distributions of passbands and stopbands are generated from their dispersion relationships. Based on the study, Brillouin diagrams of three representative special cases are drawn; S parameters of these three cases are simulated by Aglient ADS; the S parameters of one of the three cases are verified by an experiment. The phase characteristics are compared with those generated from the dispersion relationship. The theoretical analysis and the experimental verification show that both types of the periodic structures can behave as electromagnetic band gap (EBG) structures, right-handed structures (RHS), and left-handed structures (LHS), when they operate at different frequency ranges. Thus, the possibility of a physical structure showing these three different characteristics at different frequency ranges is proven.展开更多
The modulation of resonance features in microcavities is important to applications in nanophotonics.Based on the asymmetric whispering-gallery modes(WGMs)in a plasmonic resonator,we theoretically studied the mode evol...The modulation of resonance features in microcavities is important to applications in nanophotonics.Based on the asymmetric whispering-gallery modes(WGMs)in a plasmonic resonator,we theoretically studied the mode evolution in an asymmetric WGM plasmonic system.Exploiting the gap or nano-scatter in the plasmonic ring cavity,the symmetry of the system will be broken and the standing wave in the cavity will be tunable.Based on this asymmetric structure,the output coupling rate between the two cavity modes can also be tuned.Moreover,the proposed method could further be applied for sensing and detecting the position of defects in a WGM system.展开更多
We performed ultra-low temperature thermal conductivity measurements on the single crystal of a new gold-based quasi-two-dimensional superconductor Au Te2Se(4/3), which has a superconducting transition temperature T...We performed ultra-low temperature thermal conductivity measurements on the single crystal of a new gold-based quasi-two-dimensional superconductor Au Te2Se(4/3), which has a superconducting transition temperature Tc = 2.70 K. A negligible residual linear term κ0/T in zero magnetic field is observed, which suggests fully gapped superconducting state.Furthermore, the field dependence of κ0/T is similar to that of the multi-band s-wave superconductor Ba Fe1.9 Ni0.1 As2 at low field. These results reveal multiple nodeless superconducting gaps in this interesting quasi-two-dimensional superconductor with Berezinsky–Kosterlitz–Thouless topological transition.展开更多
The noncentrosymmetric superconductor CaPtAs with time-reversal symmetry breaking in its superconducting state was previously proposed to host nodal superconductivity.Here,by employing ultralow-temperature thermal con...The noncentrosymmetric superconductor CaPtAs with time-reversal symmetry breaking in its superconducting state was previously proposed to host nodal superconductivity.Here,by employing ultralow-temperature thermal conductivity measurement on CaPtAs single crystal,we study its superconducting gap structure.A negligible residual linear term of thermal conductivity(κ_(0)/T)in zero magnetic field and the field dependence ofκ_(0)/T indicate that CaPtAs has multiple superconducting gaps with a dominant s-wave component.This is consistent with recent nuclear quadrupole resonance measurements on CaPtAs.Our work puts a strong constraint on the theories to describe the superconducting pairing symmetry of CaPtAs.展开更多
It was found that selenium doping can suppress the charge-density-wave(CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point...It was found that selenium doping can suppress the charge-density-wave(CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point(QCP) in ZrTe3-xSex near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe(3-x)Sex single crystals(x = 0.044 and 0.051) down to 80 m K. For both samples, the residual linear term κ0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe(3-x)Sex,which indicates conventional superconductivity despite of the existence of a CDW QCP.展开更多
Layered organic-inorganic hybrids containing bilayer perovsikte (R-NH3)2(CH3NH3)Pb2I7 (where R=C12H25,C6H5C2H4) were synthesized by reactions in solution. The influences of the solvents and the reactant ratio on...Layered organic-inorganic hybrids containing bilayer perovsikte (R-NH3)2(CH3NH3)Pb2I7 (where R=C12H25,C6H5C2H4) were synthesized by reactions in solution. The influences of the solvents and the reactant ratio on the structures of the products were investigated. The structures and the properties of the hybrids were characterized using X-ray diffraction (XRD) and ultraviolet and visible (UV) adsorption spectra. For comparing with the bilayer perovskite hybrids in structure and band gap magnitude, the hybrids containing monolayer perovskite (R-NH3)2PbI4 were also synthesized and characterized. The results demonstrate that the thickness of inorganic layer has obvious effect on the tunneling magnitude of the band gap but the organic part can be micro actuator of band gap.展开更多
The band gap structures by arranging hybrid shunted piezoelectric materialswith resistance inductive (RL) circuit and negative impedance converter (NIC) closely and at in- tervals are presented. The theoretical mo...The band gap structures by arranging hybrid shunted piezoelectric materialswith resistance inductive (RL) circuit and negative impedance converter (NIC) closely and at in- tervals are presented. The theoretical model is built using transfer matrix method. Then the MATLAB computing language is utilized to simulate the band gap structures. Meanwhile, the effects of the resistance, inductance and capacitance on the local resonant gap are studied. By comparing different combinations of resistance, inductance and capacitance as well as different arrangement of circuits, a 13 kHz band gap is reached under the effect of arranging hybrid pe- riodic shunted piezoelectric patches at intervals and the stability of the system is also analyzed. It is proved that utilizing hybrid shunted piezoelectric patches would have a clear impact on the band gap structure of phononic crystal rods. Moreover, the band gap would be clearly enlarged by arranging hybrid piezoelectric patches at intervals.展开更多
The in-plane thermal conductivity of the iron-based superconductor Ca10(Pt4δAs8)((Fe1-xPtx)2As2)5 single crystal ("10-4-8", Tc = 22 K) was measured down to 80 inK. In a zero field, the residual linear term ...The in-plane thermal conductivity of the iron-based superconductor Ca10(Pt4δAs8)((Fe1-xPtx)2As2)5 single crystal ("10-4-8", Tc = 22 K) was measured down to 80 inK. In a zero field, the residual linear term ro/T is negligible, suggesting the nodeless superconducting gaps in this multiband compound. In the magnetic fields, r0/T increases rapidly, which mimics the multiband superconductor NbSe2 and LuNi2B2C with highly anisotropic gap. Such a field dependence of K0/T is an evidence for the multiple superconducting gaps with quite different magnitudes or highly anisotropic gap. Compared with the London penetration depth results of the Ca10(Pt3As8)((Fe1-xPtx)zAs2)5 ("10-3-8") compound, the 10-4-8 and 10-3-8 compounds may have a similar superconducting gap structure.展开更多
The effects of pH value on crystal size and optical property of zinc oxide nanoparticles prepared by chemical precipitation method were investigated.Prepared samples have been characterized by means of X-ray diffracti...The effects of pH value on crystal size and optical property of zinc oxide nanoparticles prepared by chemical precipitation method were investigated.Prepared samples have been characterized by means of X-ray diffraction,scanning electron microscopy,ultraviolet-visible spectrometer and photoluminescence spectrometer.From X-ray diffraction profile,it is found that the particle size of sample increases from 13.8 to 33 nm when the pH value of the solution was increased from 6 to 13.Microstructural study also shows that the particle size increases with pH value.Hexagonal shape of the zinc oxide nanoparticle has been confirmed by the scanning electron microscopy image.The recorded ultraviolet-visible spectrum shows excitonic absorption peaks around 381 nm.The energy gap of the prepared samples has been determined from the ultraviolet-visible absorption spectrum,effective mass model equation and Tauc's relation.It was found that the energy gap of the prepared samples decreases with increase in pH value.The recorded blue shift confirmed the quantum confinement effect in the prepared zinc oxide samples.Photoluminescence spectrum infers that the increase in pH value shifts the ultraviolet-visible emission but not the violet and green emissions.展开更多
Low-temperature specific heat(SH)is measured for the 12442-type KCa2Fe4As4F2 single crystal under different magnetic fields.A clear SH jump with the height of?C/T|Tc=130 mJ mol-1 K-2 is observed at the superconducting...Low-temperature specific heat(SH)is measured for the 12442-type KCa2Fe4As4F2 single crystal under different magnetic fields.A clear SH jump with the height of?C/T|Tc=130 mJ mol-1 K-2 is observed at the superconducting transition temperature Tc.It is found that the electronic SH coefficient?γ(H)quickly increases when the field is in the low-field region below 3T and then considerably slows down the increase with a further increase in the field,which indicates a rather strong anisotropy or multi-gap feature with a small minimum in the superconducting gap(s).The temperature-dependent SH data indicate the presence of the T2 term,which supplies further information and supports the picture with a line-nodal gap structure.Moreover,the onset point of the SH transition remains almost unchanged under the field as high as 9 T,which is similar to that observed in cuprates,and places this system in the middle between the BCS limit and the Bose-Einstein condensation.展开更多
基金Project supported by the National Natural Science Foundations of China(Grant No.61275047)the Research Project of Chinese Ministry of Education(Grant No.213009A)the Scientific and Technological Development Foundation of Jilin Province,China(Grant No.20130101031JC)
文摘Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.
基金Supported by the National Basic Research Program under Grant Nos 2012CB821402 and 2015CB921401the National Natural Science Foundation of China+1 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher LearningSTCSM of China(No 15XD1500200)
文摘We perform systematic thermal conductivity measurements on heavily hole-doped Ba1-xKxFe2As2 single crystals with 0.747 ≤ x ≤ 0.974. At x=0.747, the K0/T is negligible, indicating a nodeless superconducting gap. A small residual linear term K0/T (=0.035 m W.K-2 cm-1) appears at xz0.826, and it increases slowly up to x=0.974, followed by a substantial increase of more than 20 times to of K0/T clearly shows that the nodal gap appears near x surface topology. The small values of K0/T from x=0.826 the pure KFe2As2 (x=1.0). This doping dependence = 0.8, possibly associated with the change of Fermi to 0.974 are consistent with the Y-shaped nodal s- wave gap recently revealed by angle-resolved photoemission spectroscopy experiments at x=0.9. Furthermore, the substantial increase of K0/T from x=0.974 to 1.0 is inconsistent with a symmetry-imposed d-wave gap in KFe2 As2, and a possible nodal gap structure in KFe2As2 is discussed.
文摘The frequency down-conversion of one-dimensional photonic crystals with the coupled cavity structure is investigated by the nonlinear finite-difference time-domain method. The efficient frequency conversion is obtained by utilizing the advantages of the broad eigenfrequency band, the strong localization and the Bloch phase matching of the coupled cavity structure. More importantly, the signal frequency could be tuned continuously within the whole band of the coupled cavity structure (with a bandwidth to central frequency ratio of 5.4%), and the gains are homogeneous in the band.
基金Supported by the National Natural Science Foundation of China(61102022)the Fundamental Research Foundation of Beijing Institute of Technology of China(20120542014)
文摘Six circularly polarized patch antennas with electromagnetic band gap(EBG)arranged at different locations were studied.These EBG antennas were compared in terms of impedance bandwidth,axial ratio(AR)bandwidth and radiation patterns.When the EBG cells were placed closer to the edge of the substrate,the EBG antenna had a larger front radiation and a narrower bandwidth.Integrating the EBG cells closer to the center of the patch resulted in a wider impedance bandwidth,a wider axial ratio bandwidth and a decreased front gain.
基金supported by the Higher Education Science Foundation of Jiangsu Province(No.15KJB150031)State Key Laboratory of Structural Chemistry(No.20150009)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe technical support received from the Testing Center of Yangzhou University
文摘Two new quaternary rare-earth chalcogenides,Al_(0.42)Sm_3(Si_(0.74)Al_(0.26))S_7(1) and Al_(0.38)Gd_3(Si_(0.86)Al_(0.14))S_7(2),have been synthesized by a facile solid-state route with boron as the reducing reagent.They crystallize in the noncentrosymmetric hexagonal space group P6_3,belonging to the Ce_6Al_(3.33)S_(14) structure-type.Their 3-D structures feature 3-D frameworks constructed by RES_8 bicapped trigonal prisms,and Al and Si occupy the octahedral and tetrahedral voids,respectively.Al(2) and Si(1) co-occupying the 2b site and Al(1) partially occupying the 2a site have to be considered for the stability of the structures and charge balances.The Ce_6Al_(3.33)S_(14) structure-type compounds with their rich compositions and traits are discussed.The diffuse reflectance spectrum measurement of 2 indicates that it has an energy gap of 2.13 eV.
基金Supported by the National Natural Science Foundation of China(21233009,21225104,91422303,21301175 and 21171168)
文摘A new zero-dimensional(0D) thioborate Ba_9B_3GaS_(15) has been discovered by conventional high-temperature solid-state reaction. The compound crystallizes in orthorhombic space group Pbca with a = 8.4759(8),b = 22.266(2),c = 31.426(3) ?,V = 5931(2) ?~3,Z = 8,Mr = 1819.11,Dc = 4.075 g/cm3,μ = 13.684 mm^(-1),F(000) = 6320,S = 1.034,(Δρ)max = 5.039,(Δρ)min = –5.409 e/?~3,the final R = 0.0362 and w R = 0.1053 for 19243 observed reflections with I 〉 2σ(I). The structure is constructed by discrete [BS_3]^(3–) trigonal planes and isolated [GaS_4]^(5–) tetrahedra with Ba^(2+) and isolated S^(2–) filled among them. The UV-Vis-near-IR spectrum reveals a wide band gap of 3.15 eV that agrees with the electronic structure calculation.
基金supported by the National Natural Science Foundation of China(21301175,21233009,21571020 and 91422303)the Natural Science Foundation of Fujian Province(2015J01071)
文摘A novel ternary rare-earth sulfide, CsYb7S(11), has been successfully synthesized by high-temperature solid-state reaction of an elemental mixture with modified Cs Cl flux. The single-crystal X-ray diffraction data reveal its orthorhombic symmetry in space group Cmca(no. 64) with a = 15.271(3), b = 13.414(2), c = 18.869(3) A°, V = 3865.2(2) A°^3, Z = 8, Mr = 1696.85, Dc = 5.832 g/cm^3, μ = 36.538 mm^-1, F(000) = 5768, the final R = 0.0225 and w R = 0.0517 for 2258 observed reflections with I 〉 2σ(I), 2.67〈θ〈27.48o, w = 1/[σ^2(Fo^2) +(0.0443 P)2 + 8.7453 P], where P =(Fo^2 + 2Fc^2)/3, S = 1.036,(Δρ)max = 1.609 and(Δρ)min = –1.922. The remarkable structural feature is the dual tricapped Cs2@S18 cube closed cavities far apart within the three-dimensional [Yb7S(11)]-covalent bonding matrix. Magnetic susceptibility measurements show that the title compound exhibits temperature-dependent(50~300 K) para-magnetism and obey the Curie-Weiss law. Moreover, the optical gap of 2.03 Ev for CsYb7S11 was deduced from the UV/Vis reflectance spectroscopy and DFT study indicates an indirect band gap with an electronic transfer excitation of S-3p to Yb-5d orbital.
基金supported by the National Basic Research Program (973) under Grant No 2007CB31407
文摘Band gap characteristics of the photonic crystals in terahertz range with square lattice and triangular lattice of GaAs cylinders are comparatively studied by means of plane wave method (PWM). The influence of the radius on the band gap width is analyzed and the critical values where the band gap appears are put forward. The results show that the maximum band gap width of photonic crystal with triangular lattice of GaAs cylinders is much wider than that of photonic crystal with square lattice. The research provides a theoretic basis for the development of terahertz (THz) devices.
基金Supported by the National Natural Science Foundation of China (Grant No. 60471018)
文摘Two types of dual periodic circuits are introduced. The distributions of passbands and stopbands are generated from their dispersion relationships. Based on the study, Brillouin diagrams of three representative special cases are drawn; S parameters of these three cases are simulated by Aglient ADS; the S parameters of one of the three cases are verified by an experiment. The phase characteristics are compared with those generated from the dispersion relationship. The theoretical analysis and the experimental verification show that both types of the periodic structures can behave as electromagnetic band gap (EBG) structures, right-handed structures (RHS), and left-handed structures (LHS), when they operate at different frequency ranges. Thus, the possibility of a physical structure showing these three different characteristics at different frequency ranges is proven.
基金National Natural Science Foundation of China(NSFC)(61622103,61471050,61671083,11404031)Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(151063)Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University(KF201610)
文摘The modulation of resonance features in microcavities is important to applications in nanophotonics.Based on the asymmetric whispering-gallery modes(WGMs)in a plasmonic resonator,we theoretically studied the mode evolution in an asymmetric WGM plasmonic system.Exploiting the gap or nano-scatter in the plasmonic ring cavity,the symmetry of the system will be broken and the standing wave in the cavity will be tunable.Based on this asymmetric structure,the output coupling rate between the two cavity modes can also be tuned.Moreover,the proposed method could further be applied for sensing and detecting the position of defects in a WGM system.
基金supported by the Key Basic Research Program of China(Grant Nos.2015CB921401 and 2016YFA0300503)the National Natural Science Foundation of China(Grant Nos.11422429 and 11421404)+2 种基金China Postdoctoral Science Foundation(Grant No.2016T90332)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,and STCSM of China(Grant No.15XD1500200)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04040200)
文摘We performed ultra-low temperature thermal conductivity measurements on the single crystal of a new gold-based quasi-two-dimensional superconductor Au Te2Se(4/3), which has a superconducting transition temperature Tc = 2.70 K. A negligible residual linear term κ0/T in zero magnetic field is observed, which suggests fully gapped superconducting state.Furthermore, the field dependence of κ0/T is similar to that of the multi-band s-wave superconductor Ba Fe1.9 Ni0.1 As2 at low field. These results reveal multiple nodeless superconducting gaps in this interesting quasi-two-dimensional superconductor with Berezinsky–Kosterlitz–Thouless topological transition.
基金Project supported by the National Natural Science Foundation of China (Grant No.12174064)the National Key R&D Program of China (Grant No.2022YFA1402200)the Shanghai Municipal Science and Technology Major Project (Grant No.2019SHZDZX01)。
文摘The noncentrosymmetric superconductor CaPtAs with time-reversal symmetry breaking in its superconducting state was previously proposed to host nodal superconductivity.Here,by employing ultralow-temperature thermal conductivity measurement on CaPtAs single crystal,we study its superconducting gap structure.A negligible residual linear term of thermal conductivity(κ_(0)/T)in zero magnetic field and the field dependence ofκ_(0)/T indicate that CaPtAs has multiple superconducting gaps with a dominant s-wave component.This is consistent with recent nuclear quadrupole resonance measurements on CaPtAs.Our work puts a strong constraint on the theories to describe the superconducting pairing symmetry of CaPtAs.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB821402 and 2015CB921401)the National Natural Science Foundation of China(Grant Nos.91421101,11422429,and 11204312)+1 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,China,STCSM of China(Grant No.15XD1500200)Work at Brookhaven National Laboratory was supported by the US DOE under Contract No.DESC00112704
文摘It was found that selenium doping can suppress the charge-density-wave(CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point(QCP) in ZrTe3-xSex near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe(3-x)Sex single crystals(x = 0.044 and 0.051) down to 80 m K. For both samples, the residual linear term κ0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe(3-x)Sex,which indicates conventional superconductivity despite of the existence of a CDW QCP.
基金National Natural Science Foundation of China(No.50972113)
文摘Layered organic-inorganic hybrids containing bilayer perovsikte (R-NH3)2(CH3NH3)Pb2I7 (where R=C12H25,C6H5C2H4) were synthesized by reactions in solution. The influences of the solvents and the reactant ratio on the structures of the products were investigated. The structures and the properties of the hybrids were characterized using X-ray diffraction (XRD) and ultraviolet and visible (UV) adsorption spectra. For comparing with the bilayer perovskite hybrids in structure and band gap magnitude, the hybrids containing monolayer perovskite (R-NH3)2PbI4 were also synthesized and characterized. The results demonstrate that the thickness of inorganic layer has obvious effect on the tunneling magnitude of the band gap but the organic part can be micro actuator of band gap.
基金supported by the National Natural Science Foundation of China(11202056)the Fundamental Research Funds for the Central Universities(HEUCFQ20150305)
文摘The band gap structures by arranging hybrid shunted piezoelectric materialswith resistance inductive (RL) circuit and negative impedance converter (NIC) closely and at in- tervals are presented. The theoretical model is built using transfer matrix method. Then the MATLAB computing language is utilized to simulate the band gap structures. Meanwhile, the effects of the resistance, inductance and capacitance on the local resonant gap are studied. By comparing different combinations of resistance, inductance and capacitance as well as different arrangement of circuits, a 13 kHz band gap is reached under the effect of arranging hybrid pe- riodic shunted piezoelectric patches at intervals and the stability of the system is also analyzed. It is proved that utilizing hybrid shunted piezoelectric patches would have a clear impact on the band gap structure of phononic crystal rods. Moreover, the band gap would be clearly enlarged by arranging hybrid piezoelectric patches at intervals.
基金supported by the National Basic Research Program of China(Grant No.2012CB821402)the National Natural Science Foundation of China(Grant Nos.11422429 and 91421101)+1 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Science and Technology Commission of Shanghai Municipality of China(Grant No.15XD1500200)
文摘The in-plane thermal conductivity of the iron-based superconductor Ca10(Pt4δAs8)((Fe1-xPtx)2As2)5 single crystal ("10-4-8", Tc = 22 K) was measured down to 80 inK. In a zero field, the residual linear term ro/T is negligible, suggesting the nodeless superconducting gaps in this multiband compound. In the magnetic fields, r0/T increases rapidly, which mimics the multiband superconductor NbSe2 and LuNi2B2C with highly anisotropic gap. Such a field dependence of K0/T is an evidence for the multiple superconducting gaps with quite different magnitudes or highly anisotropic gap. Compared with the London penetration depth results of the Ca10(Pt3As8)((Fe1-xPtx)zAs2)5 ("10-3-8") compound, the 10-4-8 and 10-3-8 compounds may have a similar superconducting gap structure.
文摘The effects of pH value on crystal size and optical property of zinc oxide nanoparticles prepared by chemical precipitation method were investigated.Prepared samples have been characterized by means of X-ray diffraction,scanning electron microscopy,ultraviolet-visible spectrometer and photoluminescence spectrometer.From X-ray diffraction profile,it is found that the particle size of sample increases from 13.8 to 33 nm when the pH value of the solution was increased from 6 to 13.Microstructural study also shows that the particle size increases with pH value.Hexagonal shape of the zinc oxide nanoparticle has been confirmed by the scanning electron microscopy image.The recorded ultraviolet-visible spectrum shows excitonic absorption peaks around 381 nm.The energy gap of the prepared samples has been determined from the ultraviolet-visible absorption spectrum,effective mass model equation and Tauc's relation.It was found that the energy gap of the prepared samples decreases with increase in pH value.The recorded blue shift confirmed the quantum confinement effect in the prepared zinc oxide samples.Photoluminescence spectrum infers that the increase in pH value shifts the ultraviolet-visible emission but not the violet and green emissions.
基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015187)the National Natural Science Foundation of China(Grant Nos.11204338,and 11927807)the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB04040300).Wei Li also acknowledges the start-up funding from Fudan University.
文摘Low-temperature specific heat(SH)is measured for the 12442-type KCa2Fe4As4F2 single crystal under different magnetic fields.A clear SH jump with the height of?C/T|Tc=130 mJ mol-1 K-2 is observed at the superconducting transition temperature Tc.It is found that the electronic SH coefficient?γ(H)quickly increases when the field is in the low-field region below 3T and then considerably slows down the increase with a further increase in the field,which indicates a rather strong anisotropy or multi-gap feature with a small minimum in the superconducting gap(s).The temperature-dependent SH data indicate the presence of the T2 term,which supplies further information and supports the picture with a line-nodal gap structure.Moreover,the onset point of the SH transition remains almost unchanged under the field as high as 9 T,which is similar to that observed in cuprates,and places this system in the middle between the BCS limit and the Bose-Einstein condensation.