期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image
1
作者 Yiwei Chen Yi He +3 位作者 Hong Ye Lina Xing Xin Zhang Guohua Shi 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期105-113,共9页
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im... The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error. 展开更多
关键词 Fundus fluorescein angiography image fundus structure image image translation unified deep learning model generative adversarial networks
下载PDF
Synthesis, Crystal Structure, Two-photon Absorption and Biological Imaging Application of a Water Soluble Carbazole Quaternary Ammonium Compound
2
作者 王聪 孙婉 +3 位作者 王安然 李胜利 吴杰颖 田玉鹏 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第4期589-598,共10页
A novel carbazole quaternary ammonium compound(abbreviated as T_2) had been synthesized and characterized by ~1H NMR, ^(13)C NMR and Mass spectrometry. The single-crystal structure has been determined by X-ray sin... A novel carbazole quaternary ammonium compound(abbreviated as T_2) had been synthesized and characterized by ~1H NMR, ^(13)C NMR and Mass spectrometry. The single-crystal structure has been determined by X-ray single-crystal diffraction. The electrochemical and two-photon absorption properties of T_2 were systematically studied by cyclic voltammetry and Z-scan determination methods, respectively. The results suggested that T_2 had a good oxidation-reduction and excellent nonlinear optical property. The two-photon absorption(TPA) value has a maximum corresponding to cross section σ = 7963.3 GM(Goeppert-Mayer units) at 700 nm, indicating potential applications in nonlinear optical materials. Furthermore, attributing to the excellent water solubility and low cytotoxicity, the compound was explored on its primary application in biological imaging. 展开更多
关键词 carbazole quaternary ammonium crystal structure two-photon absorption one-photon fluorescence biological imaging
下载PDF
Coverless Information Hiding Based on the Molecular Structure Images of Material 被引量:10
3
作者 Yi Cao Zhili Zhou +1 位作者 Xingming Sun Chongzhi Gao 《Computers, Materials & Continua》 SCIE EI 2018年第2期197-207,共11页
The traditional information hiding methods embed the secret information by modifying the carrier,which will inevitably leave traces of modification on the carrier.In this way,it is hard to resist the detection of steg... The traditional information hiding methods embed the secret information by modifying the carrier,which will inevitably leave traces of modification on the carrier.In this way,it is hard to resist the detection of steganalysis algorithm.To address this problem,the concept of coverless information hiding was proposed.Coverless information hiding can effectively resist steganalysis algorithm,since it uses unmodified natural stego-carriers to represent and convey confidential information.However,the state-of-the-arts method has a low hidden capacity,which makes it less appealing.Because the pixel values of different regions of the molecular structure images of material(MSIM)are usually different,this paper proposes a novel coverless information hiding method based on MSIM,which utilizes the average value of sub-image’s pixels to represent the secret information,according to the mapping between pixel value intervals and secret information.In addition,we employ a pseudo-random label sequence that is used to determine the position of sub-images to improve the security of the method.And the histogram of the Bag of words model(BOW)is used to determine the number of subimages in the image that convey secret information.Moreover,to improve the retrieval efficiency,we built a multi-level inverted index structure.Furthermore,the proposed method can also be used for other natural images.Compared with the state-of-the-arts,experimental results and analysis manifest that our method has better performance in anti-steganalysis,security and capacity. 展开更多
关键词 Coverless information hiding molecular structure images of material pixel value inverted index image retrieval bag of words model
下载PDF
Application of modern neuroimaging technology in the diagnosis and study of Alzheimer’s disease 被引量:2
4
作者 Hong-Mei Zeng Hua-Bo Han +1 位作者 Qi-Fang Zhang Hua Bai 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第1期73-79,共7页
Neurological abnormalities identified via neuroimaging are common in patients with Alzheimer’s disease.However,it is not yet possible to easily detect these abnormalities using head computed tomography in the early s... Neurological abnormalities identified via neuroimaging are common in patients with Alzheimer’s disease.However,it is not yet possible to easily detect these abnormalities using head computed tomography in the early stages of the disease.In this review,we evaluated the ways in which modern imaging techniques such as positron emission computed tomography,single photon emission tomography,magnetic resonance spectrum imaging,structural magnetic resonance imaging,magnetic resonance diffusion tensor imaging,magnetic resonance perfusion weighted imaging,magnetic resonance sensitive weighted imaging,and functional magnetic resonance imaging have revealed specific changes not only in brain structure,but also in brain function in Alzheimer’s disease patients.The reviewed literature indicated that decreased fluorodeoxyglucose metabolism in the temporal and parietal lobes of Alzheimer’s disease patients is frequently observed via positron emission computed tomography.Furthermore,patients with Alzheimer’s disease often show a decreased N-acetylaspartic acid/creatine ratio and an increased myoinositol/creatine ratio revealed via magnetic resonance imaging.Atrophy of the entorhinal cortex,hippocampus,and posterior cingulate gyrus can be detected early using structural magnetic resonance imaging.Magnetic resonance sensitive weighted imaging can show small bleeds and abnormal iron metabolism.Task-related functional magnetic resonance imaging can display brain function activity through cerebral blood oxygenation.Resting functional magnetic resonance imaging can display the functional connection between brain neural networks.These are helpful for the differential diagnosis and experimental study of Alzheimer’s disease,and are valuable for exploring the pathogenesis of Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease behavior BRAIN cognitive impairment FLUORODEOXYGLUCOSE MEMORY neurological function structural magnetic resonance imaging translocator protein
下载PDF
Diagnostic value of amygdala volume on structural magnetic resonance imaging in Alzheimer’s disease 被引量:2
5
作者 De-Wei Wang Shou-Luan Ding +3 位作者 Xian-Li Bian Shi-Yue Zhou Hui Yang Ping Wang 《World Journal of Clinical Cases》 SCIE 2021年第18期4627-4636,共10页
BACKGROUND The main clinical manifestation of Alzheimer’s disease(AD)is memory loss,which can be accompanied by neuropsychiatric symptoms at different stages of the disease.Amygdala is closely related to emotion and ... BACKGROUND The main clinical manifestation of Alzheimer’s disease(AD)is memory loss,which can be accompanied by neuropsychiatric symptoms at different stages of the disease.Amygdala is closely related to emotion and memory.AIM To evaluate the diagnostic value of amygdala on structural magnetic resonance imaging(sMRI)for AD.METHODS In this study,22 patients with AD and 26 controls were enrolled.Their amygdala volumes were measured by sMRI and analyzed using an automatic analysis software.RESULTS The bilateral amygdala volumes of AD patients were significantly lower than those of the controls and were positively correlated with the hippocampal volumes.Receiver operating characteristic curve analyses showed that the sensitivity of the left and right amygdala volumes in diagnosing AD was 80.8%and 88.5%,respectively.Subgroup analyses showed that amygdala atrophy was more serious in AD patients with neuropsychiatric symptoms,which mainly included irritability(22.73%),sleep difficulties(22.73%),apathy(18.18%),and hallucination(13.64%).CONCLUSION Amygdala volumes measured by sMRI can be used to diagnose AD,and amygdala atrophy is more serious in patients with neuropsychiatric symptoms. 展开更多
关键词 Alzheimer’s disease AMYGDALA Structural magnetic resonance imaging Neuropsychiatric symptoms
下载PDF
SEGMENTATION ALGORITHM BASED ON EDGE-SEARCHING FOR MULTI-LINEAR STRUCTURED LIGHT IMAGES 被引量:3
6
作者 LIU Baohua LI Bing JIANG Zhuangde 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期468-470,共3页
Aiming at the problem that the existence of disturbances on the edges of light-stripe makes the segmentation of the light-stripes images difficult, a new segmentation algorithm based on edge-searching is presented. It... Aiming at the problem that the existence of disturbances on the edges of light-stripe makes the segmentation of the light-stripes images difficult, a new segmentation algorithm based on edge-searching is presented. It firstly calculates every edge pixel's horizontal coordinate grads to produce the corresponding grads-edge, then uses a designed length-variable l D template to scan the light-stripes' grads-edges. The template is able to find the disturbances with different width utilizing the distributing character of the edge disturbances. The found disturbances are eliminated finally. The algorithm not only can smoothly segment the light-stripes images, but also eliminate most disturbances on the light-stripes' edges without damaging the light-stripes images' 3D information. A practical example of using the proposed algorithm is given in the end. It is proved that the efficiency of the algorithm has been improved obviously by comparison. 展开更多
关键词 structured light Image segmentation Disturbances Edge-searching
下载PDF
A study on coherent structures and drag-reduction in the wall turbulence with polymer additives by TRPIV 被引量:4
7
作者 Xin-Lei Guan Shi-Yong Yao Nan Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期485-493,共9页
An experimental measurement was performed us- ing time-resolved particle image velocimetry (TRPIV) to in- vestigate the spatial topological character of coherent struc- tures in wall-bounded turbulence of polymer ad... An experimental measurement was performed us- ing time-resolved particle image velocimetry (TRPIV) to in- vestigate the spatial topological character of coherent struc- tures in wall-bounded turbulence of polymer additive solu- tion. The fully developed near-wall turbulent flow fields with and without polymer additives at the same Reynolds number were measured by TRPIV in a water channel. The compar- isons of turbulent statistics confirm that due to viscoelastic structure of long-chain polymers, the wall-normal velocity fluctuation and Reynolds shear stress in the near-wall region are suppressed significantly. Furthermore, it is noted that such a behavior of polymers is closely related to the decease of the motion of the second and forth quadrants, i.e., the ejection and sweep events, in the near-wall region. The spa- tial topological mode of coherent structures during bursts has been extracted by the new mu-level criteria based on locally averaged velocity structure function. Although the general shapes of coherent structures are unchanged by polymer additives, the fluctuating velocity, velocity gradient, velocity strain rate and vorticity of coherent structures during burst events are suppressed in the polymer additive solution com- pared with that in water. The results show that due to the polymer additives the occurrence and intensity of coherent structures are suppressed, leading to drag reduction. 展开更多
关键词 Time-resolved particle image velocimetry ~ Wall-bounded turbulence ~ Coherent structures ~ Polymer addi-tives ~ Drag reduction
下载PDF
Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets 被引量:8
8
作者 Shao-Qiong Yang Shan Li +2 位作者 Hai-Ping Tian Qing-Yi Wang Nan Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期284-294,共11页
Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-insp... Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer(TBL) is investigated.This is done by means of tomographic particle image velocimetry(TPIV) measurements in channel fl ws over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190.The turbulent fl ws over drag-reducing riblets are verifie by a planar time-resolved particle image velocimetry(TRPIV) system initially,and then the TPIV measurements are performed.Two-dimensional(2D) experimental results with a dragreduction rate of around 4.81% are clearly visible over triangle riblets with a peak-to-peak spacing s+of 14,indicating from the drag-reducing performance that the buffer layer within the TBL has thickened;the logarithmic law region has shifted upward and the Reynolds shear stress decreased.A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudesof the spanwise vorticity when ejection(Q2) and sweep(Q4) events occur at the near wall,having the greatest effect on Q4 events in particular.The so-called quadrupole statistical model for coherent structures in the whole TBL is verified Meanwhile,their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent fl w over riblets are changed,suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events(Q2 and Q4),thereby reducing the skin friction drag. 展开更多
关键词 Turbulent boundary layer(TBL) Coherent vortex structure Flow control Drag reduction Shark-skininspired riblet Tomographic particle image velocimetry(TPIV)
下载PDF
THE DETECTION OF THE BOUNDARY OF IMAGE OF WOODANATOMICAL STRUCTURE MOLECULAR
9
作者 邹常丰 王金满 王德洪 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1996年第3期58-61,共4页
Basing on a lot of examinations, according to the fundamental inage processing theories and methods, getting touch with the property of wood anatomical structure image,we put forward the optimum method and theory whic... Basing on a lot of examinations, according to the fundamental inage processing theories and methods, getting touch with the property of wood anatomical structure image,we put forward the optimum method and theory which are suitable for the binary processing of the wood anatomical structure image. After the wood image has been processed binary, with the help of computer vision technology, the boundary of wood anatomical structure molecular binary image was sought This kind of theory and method lay a solid foundaion on the collection of feature and the pottern recognition and other high level processing of wood anatomical structure molecular image. 展开更多
关键词 Wood anatomical structure molecular image Detection of the boundary
下载PDF
From structural to functional imaging:the developments of clinical ophthalmology optical coherence tomography
10
作者 QIN Jia AN Lin 《Instrumentation》 2016年第4期15-28,共14页
Starting with introduction of basic concept of optical coherence tomography(OCT) techniques,this paper focuses on a detailed review of ophthalmic OCT instruments and their clinical applications. As one of the most imp... Starting with introduction of basic concept of optical coherence tomography(OCT) techniques,this paper focuses on a detailed review of ophthalmic OCT instruments and their clinical applications. As one of the most important inventions of ophthalmology instruments,OCT has become a standard imaging tool for daily ophthalmic diagnosis. The imaging capability has been significantly improved during the past ~ 30 years. In this article,several representing systems which have made significant contributions to OCT developments will be reviewed in details. For each system,the system configuration will be discussed first,follow ed by a brief introduction of their clinical applications. The review concludes with discussions on potential directions of OCT developments and expectations for further improvements of OCT imaging capabilities. 展开更多
关键词 optical coherence tomography ANGIOGRAPHY structural and functional imaging VASCULATURE RETINA
下载PDF
Two-dimensional horizontal visibility graph analysis of human brain aging on gray matter
11
作者 倪黄晶 杜若瑜 +3 位作者 梁磊 花玲玲 朱丽华 秦姣龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期558-563,共6页
Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic r... Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic resonance imaging literature explores brain aging merely from the perspective of morphological features,which cannot fully utilize the grayscale values containing important intrinsic information about brain structure.In this study,we propose the construction of two-dimensional horizontal visibility graphs based on the pixel intensity values of the gray matter slices directly.Normalized network structure entropy(NNSE)is then introduced to quantify the overall heterogeneities of these graphs.The results demonstrate a decrease in the NNSEs of gray matter with age.Compared with the middle-aged and the elderly,the larger values of the NNSE in the younger group may indicate more homogeneous network structures,smaller differences in importance between nodes and thus a more powerful ability to tolerate intrusion.In addition,the hub nodes of different adult age groups are primarily located in the precuneus,cingulate gyrus,superior temporal gyrus,inferior temporal gyrus,parahippocampal gyrus,insula,precentral gyrus and postcentral gyrus.Our study can provide a new perspective for understanding and exploring the structural mechanism of brain aging. 展开更多
关键词 two-dimensional horizontal visibility graph brain aging structural magnetic resonance imaging network structure entropy
下载PDF
Exploring Brain Age Calculation Models Available for Alzheimer's Disease
12
作者 Lihan Wang Honghong Liu +2 位作者 Weijia Liu Qunxi Dong Bin Hu 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期181-187,共7页
The advantages of structural magnetic resonance imaging(sMRI)-based multidimensional tensor morphological features in brain disease research are the high sensitivity and resolution of sMRI to comprehensively capture t... The advantages of structural magnetic resonance imaging(sMRI)-based multidimensional tensor morphological features in brain disease research are the high sensitivity and resolution of sMRI to comprehensively capture the key structural information and quantify the structural deformation.However,its direct application to regression analysis of high-dimensional small-sample data for brain age prediction may cause“dimensional catastrophe”.Therefore,this paper develops a brain age prediction method for high-dimensional small-sample data based on sMRI multidimensional morphological features and constructs brain age gap estimation(BrainAGE)biomarkers to quantify abnormal aging of key subcortical structures by extracting subcortical structural features for brain age prediction,which can then establish statistical analysis models to help diagnose Alzheimer’s disease and monitor health conditions,intervening at the preclinical stage. 展开更多
关键词 brain age gap estimation(BrainAGE) Alzheimer’s disease(AD) structural magnetic resonance imaging(sMRI)
下载PDF
Gut bless you:The microbiota-gut-brain axis in irritable bowel syndrome 被引量:20
13
作者 Eline Margrete Randulff Hillestad Aina van der Meeren +8 位作者 Bharat Halandur Nagaraja Ben RenéBjørsvik Noman Haleem Alfonso Benitez-Paez Yolanda Sanz Trygve Hausken Gülen Arslan Lied Arvid Lundervold Birgitte Berentsen 《World Journal of Gastroenterology》 SCIE CAS 2022年第4期412-431,共20页
Irritable bowel syndrome(IBS)is a common clinical label for medically unexplained gastrointestinal symptoms,recently described as a disturbance of the microbiota-gut-brain axis.Despite decades of research,the pathophy... Irritable bowel syndrome(IBS)is a common clinical label for medically unexplained gastrointestinal symptoms,recently described as a disturbance of the microbiota-gut-brain axis.Despite decades of research,the pathophysiology of this highly heterogeneous disorder remains elusive.However,a dramatic change in the understanding of the underlying pathophysiological mechanisms surfaced when the importance of gut microbiota protruded the scientific picture.Are we getting any closer to understanding IBS’etiology,or are we drowning in unspecific,conflicting data because we possess limited tools to unravel the cluster of secrets our gut microbiota is concealing?In this comprehensive review we are discussing some of the major important features of IBS and their interaction with gut microbiota,clinical microbiota-altering treatment such as the low FODMAP diet and fecal microbiota transplantation,neuroimaging and methods in microbiota analyses,and current and future challenges with big data analysis in IBS. 展开更多
关键词 MICROBIOTA Neurogastroenterology Irritable bowel syndrome Microbiotagut-brain axis Structural and functional magnetic resonance imaging Machine learning Big data analysis
下载PDF
High-speed 3D imaging based on structured illumination and electrically tunable lens 被引量:1
14
作者 王东平 孟云龙 +2 位作者 陈頔瀚 任揚 陳世祈 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第9期12-15,共4页
In this Letter, we present a high-speed volumetric imaging system based on structured illumination and an electrically tunable lens(ETL), where the ETL performs fast axial scanning at hundreds of Hz. In the system,a... In this Letter, we present a high-speed volumetric imaging system based on structured illumination and an electrically tunable lens(ETL), where the ETL performs fast axial scanning at hundreds of Hz. In the system,a digital micro-mirror device(DMD) is utilized to rapidly generate structured images at the focal plane in synchronization with the axial scanning unit. The scanning characteristics of the ETL are investigated theoretically and experimentally. Imaging experiments on pollen samples are performed to verify the optical cross-sectioning and fast axial scanning capabilities. The results show that our system can perform fast axial scanning and threedimensional(3D) imaging when paired with a high-speed camera, presenting an economic solution for advanced biological imaging applications. 展开更多
关键词 ETL High-speed 3D imaging based on structured illumination and electrically tunable lens
原文传递
Imaging the structure and organization of mouse cerebellum and brain stem with second harmonic generation microscopy
15
作者 刘秀丽 华道柱 +1 位作者 付玲 曾绍群 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第9期7-11,共5页
To visualize the structure and organization of the brain is a fundamental requirement in the research of neuroscience. Here, combining with two-photon excitation fluorescence microscopy and transgenetic mouse GAD67,we... To visualize the structure and organization of the brain is a fundamental requirement in the research of neuroscience. Here, combining with two-photon excitation fluorescence microscopy and transgenetic mouse GAD67,we demonstrate a custom-built second harmonic generation(SHG) microscope to discriminate brain layers and sub regions in the cerebellum and brain stem slices with cellular resolution. In particular, the cell densities of neurons in different brain layers are extracted due to the cell soma appearing as dark shadow on an SHG image.Further, the axon initial segments of the Purkinje cell are easily recognized without labeling, which would be useful for guiding micropipettes for electrophysiology. 展开更多
关键词 SHG imaging the structure and organization of mouse cerebellum and brain stem with second harmonic generation microscopy
原文传递
Brain structure underlying the empathizing–systemizing difference in children with autism spectrum disorder
16
作者 Ning Pan Li-Zi Lin +7 位作者 Xin Wang Lei Shi Xiao-Yu Xu Yu-Ying Jin Si Tan Xiao-Jing Song Jin Jing Xiu-Hong Li 《World Journal of Pediatrics》 SCIE CSCD 2023年第8期782-792,共11页
Background Behavioral research has shown that children with autism spectrum disorder(ASD)have a higher empathizing–systemizing difference(D score)than normal children.However,there is no research about the neuroanato... Background Behavioral research has shown that children with autism spectrum disorder(ASD)have a higher empathizing–systemizing difference(D score)than normal children.However,there is no research about the neuroanatomical mechanisms of the empathizing–systemizing difference in children with ASD.Methods Participants comprised 41 children with ASD and 39 typically developing(TD)children aged 6‒12 years.Empathizing–systemizing difference was estimated using the D score from the Chinese version of Children’s Empathy Quotient and Systemizing Quotient.We quantified brain morphometry,including global and regional brain volumes and surface-based cortical measures(cortical thickness,surface area,and gyrification)via structural magnetic resonance imaging.Results We found that the D score was significantly negatively associated with amygdala gray matter volume[β=−0.16;95%confidence interval(CI):−0.30,−0.02;P value=0.030]in children with ASD.There was a significantly negative association between D score and gyrification in the left lateral occipital cortex(LOC)in children with ASD(B=−0.10;SE=0.03;cluster-wise P value=0.006)and a significantly positive association between D score and gyrification in the right fusiform in TD children(B=0.10;SE=0.03;cluster-wise P value=0.022).Moderation analyses demonstrated significant interactions between D score and diagnosed group in amygdala gray matter volume(β=0.19;95%CI 0.04,0.35;P value=0.013)and left LOC gyrification(β=0.11;95%CI 0.05,0.17;P value=0.001)but not in right fusiform gyrification(β=0.08;95%CI−0.02,0.17;P value=0.105).Conclusions Neuroanatomical variation in amygdala volume and gyrification of LOC could be potential biomarkers for the empathizing–systemizing difference in children with ASD but not in TD children.Large-scale neuroimaging studies are necessary to test the replicability of our findings. 展开更多
关键词 Autism spectrum disorder EMPATHY Structural magnetic resonance imaging SYSTEMIZING
原文传递
Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders
17
作者 Samah Ibrahim Alshathri Desiree Juby Vincent V.S.Hari 《Computers, Materials & Continua》 SCIE EI 2022年第4期1371-1386,共16页
Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In ... Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In this paper,letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method.A stacked denoising autoencoder(SDAE)is implemented with two hidden layers each in encoder network and decoder network.In order to capture the most salient features of training samples,a undercomplete autoencoder is designed with non-linear encoder and decoder function.This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy.A dataset consisting of 59,119 letter images,which contains both English alphabets(upper and lower case)and numbers(0 to 9)is prepared from many scanned invoices images and windows true type(.ttf)files,are used for training the neural network.Performance is analyzed in terms of Signal to Noise Ratio(SNR),Peak Signal to Noise Ratio(PSNR),Structural Similarity Index(SSIM)and Universal Image Quality Index(UQI)and compared with other filtering techniques like Nonlocal Means filter,Anisotropic diffusion filter,Gaussian filters and Mean filters.Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values.Results show the superior performance of proposed SDAE method. 展开更多
关键词 Stacked denoising autoencoder(SDAE) optical character recognition(OCR) signal to noise ratio(SNR) universal image quality index(UQ1)and structural similarity index(SSIM)
下载PDF
Machine learning for detecting mesial temporal lobe epilepsy by structural and functional neuroimaging 被引量:2
18
作者 Baiwan Zhou Dongmei An +8 位作者 Fenglai Xiao Running Niu Wenbin Li Wei Li Xin Tong Graham J Kemp Dong Zhou Qiyong Gong Du Lei 《Frontiers of Medicine》 SCIE CAS CSCD 2020年第5期630-641,共12页
Mesial temporal lobe epilepsy(mTLE),the most common type of focal epilepsy,is associated with functional and structural brain alterations.Machine learning(ML)techniques have been successfully used in discriminating mT... Mesial temporal lobe epilepsy(mTLE),the most common type of focal epilepsy,is associated with functional and structural brain alterations.Machine learning(ML)techniques have been successfully used in discriminating mTLE from healthy controls.However,either functional or structural neuroimaging data are mostly used separately as input,and the opportunity to combine both has not been exploited yet.We conducted a multimodal ML study based on functional and structural neuroimaging measures.We enrolled 37 patients with left mTLE,37 patients with right mTLE,and 74 healthy controls and trained a support vector ML model to distinguish them by using each measure and the combinations of the measures.For each single measure,we obtained a mean accuracy of 74%and 69%for discriminating left mTLE and right mTLE from controls,respectively,and 64%when all patients were combined.We achieved an accuracy of 78%by integrating functional data and 79%by integrating structural data for left mTLE,and the highest accuracy of 84%was obtained when all functional and structural measures were combined.These findings suggest that combining multimodal measures within a single model is a promising direction for improving the classification of individual patients with mTLE. 展开更多
关键词 mesial temporal lobe epilepsy functional magnetic resonance imaging structural magnetic resonance imaging machine learning support vector machine
原文传递
Can multi-modal neuroimaging evidence from hippocampus provide biomarkers for the progression of amnestic mild cognitive impairment? 被引量:4
19
作者 Jiu Chen Zhijun Zhang Shijiang Li 《Neuroscience Bulletin》 SCIE CAS CSCD 2015年第1期128-140,共13页
Impaired structure and function of the hippocampus is a valuable predictor of progression from amnestic mild cognitive impairment(a MCI) to Alzheimer's disease(AD). As a part of the medial temporal lobe memory sy... Impaired structure and function of the hippocampus is a valuable predictor of progression from amnestic mild cognitive impairment(a MCI) to Alzheimer's disease(AD). As a part of the medial temporal lobe memory system,the hippocampus is one of the brain regions affected earliest by AD neuropathology,and shows progressive degeneration as a MCI progresses to AD. Currently,no validated biomarkers can precisely predict the conversion from a MCI to AD. Therefore,there is a great need of sensitive tools for the early detection of AD progression. In this review,we summarize the specifi c structural and functional changes in the hippocampus from recent a MCI studies using neurophysiological and neuroimaging data. We suggest that a combination of advanced multi-modal neuroimaging measures in discovering biomarkers will provide more precise and sensitive measures of hippocampal changes than using only one of them. These will potentially affect early diagnosis and disease-modifying treatments. We propose a new sequential and progressive framework in which the impairment spreads from the integrity of fibers to volume and then to function in hippocampal subregions. Meanwhile,this is likely to be accompanied by progressive impairment of behavioral and neuropsychological performance in the progression of a MCI to AD. 展开更多
关键词 Alzheimer's disease amnestic mild cognitive impairment hippocampus episodic memory functional magnetic resonance imaging structural magnetic resonance imaging diffusion tensor imaging multi-modal MRI biomarker
原文传递
Decoding fear of negative evaluation from brain morphology:A machine-learning study on structural neuroimaging data
20
作者 Chunliang Feng Frank Krueger +1 位作者 Ruolei Gu Wenbo Luo 《Quantitative Biology》 CSCD 2022年第4期390-402,共13页
Background:Fear of negative evaluation(FNE),referring to negative expectation and feelings toward other people’s social evaluation,is closely associated with social anxiety that plays an important role in our social ... Background:Fear of negative evaluation(FNE),referring to negative expectation and feelings toward other people’s social evaluation,is closely associated with social anxiety that plays an important role in our social life.Exploring the neural markers of FNE may be of theoretical and practical significance to psychiatry research(e.g.,studies on social anxiety).Methods:To search for potentially relevant biomarkers of FNE in human brain,the current study applied multivariate relevance vector regression,a machine-learning and data-driven approach,on brain morphological features(e.g.,cortical thickness)derived from structural imaging data;further,we used these features as indexes to predict self-reported FNE score in each participant.Results:Our results confirm the predictive power of multiple brain regions,including those engaged in negative emotional experience(e.g.,amygdala,insula),regulation and inhibition of emotional feeling(e.g.,frontal gyrus,anterior cingulate gyrus),and encoding and retrieval of emotional memory(e.g.,posterior cingulate cortex,parahippocampal gyrus).Conclusions:The current findings suggest that anxiety represents a complicated construct that engages multiple brain systems,from primitive subcortical mechanisms to sophisticated cortical processes. 展开更多
关键词 fear of negative evaluation social anxiety structural magnetic resonance imaging machine learning relevance vector regression
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部