Objective:To compare the prognostic factors of mortality among melioidosis patients between lognormal accelerated failure time(AFT),Cox proportional hazards(PH),and Cox PH with time-varying coefficient(TVC)models.Meth...Objective:To compare the prognostic factors of mortality among melioidosis patients between lognormal accelerated failure time(AFT),Cox proportional hazards(PH),and Cox PH with time-varying coefficient(TVC)models.Methods:A retrospective study was conducted from 2014 to 2019 among 453 patients who were admitted to Hospital Sultanah Bahiyah,Kedah and Hospital Tuanku Fauziah,Perlis in Northern Malaysia due to confirmed-cultured melioidosis.The prognostic factors of mortality from melioidosis were obtained from AFT survival analysis,and Cox’s models and the findings were compared by using the goodness of fit methods.The analyses were done by using Stata SE version 14.0.Results:A total of 242 patients(53.4%)survived.In this study,the median survival time of melioidosis patients was 30.0 days(95%CI 0.0-60.9).Six significant prognostic factors were identified in the Cox PH model and Cox PH-TVC model.In AFT survival analysis,a total of seven significant prognostic factors were identified.The results were found to be only a slight difference between the identified prognostic factors among the models.AFT survival showed better results compared to Cox's models,with the lowest Akaike information criteria and best fitted Cox-snell residuals.Conclusions:AFT survival analysis provides more reliable results and can be used as an alternative statistical analysis for determining the prognostic factors of mortality in melioidosis patients in certain situations.展开更多
Survival of HIV/AIDS patients is crucially dependent on comprehensive and targeted medical interventions such as supply of antiretroviral therapy and monitoring disease progression with CD4 T-cell counts. Statistical ...Survival of HIV/AIDS patients is crucially dependent on comprehensive and targeted medical interventions such as supply of antiretroviral therapy and monitoring disease progression with CD4 T-cell counts. Statistical modelling approaches are helpful towards this goal. This study aims at developing Bayesian joint models with assumed generalized error distribution (GED) for the longitudinal CD4 data and two accelerated failure time distributions, Lognormal and loglogistic, for the survival time of HIV/AIDS patients. Data are obtained from patients under antiretroviral therapy follow-up at Shashemene referral hospital during January 2006-January 2012 and at Bale Robe general hospital during January 2008-March 2015. The Bayesian joint models are defined through latent variables and association parameters and with specified non-informative prior distributions for the model parameters. Simulations are conducted using Gibbs sampler algorithm implemented in the WinBUGS software. The results of the analyses of the two different data sets show that distributions of measurement errors of the longitudinal CD4 variable follow the generalized error distribution with fatter tails than the normal distribution. The Bayesian joint GED loglogistic models fit better to the data sets compared to the lognormal cases. Findings reveal that patients’ health can be improved over time. Compared to the males, female patients gain more CD4 counts. Survival time of a patient is negatively affected by TB infection. Moreover, increase in number of opportunistic infection implies decline of CD4 counts. Patients’ age negatively affects the disease marker with no effects on survival time. Improving weight may improve survival time of patients. Bayesian joint models with GED and AFT distributions are found to be useful in modelling the longitudinal and survival processes. Thus we recommend the generalized error distributions for measurement errors of the longitudinal data under the Bayesian joint modelling. Further studies may investigate the models with various types of shared random effects and more covariates with predictions.展开更多
In this paper, we have studied the nonparameter accelerated failure time (AFT) additive regression model, whose covariates have a nonparametric effect on high-dimensional censored data. We give the asymptotic property...In this paper, we have studied the nonparameter accelerated failure time (AFT) additive regression model, whose covariates have a nonparametric effect on high-dimensional censored data. We give the asymptotic property of the penalty estimator based on GMCP in the nonparameter AFT model.展开更多
Major disasters such as wildfire, tornado, hurricane, tropical storm, and flooding cause disruptions in infrastructure systems such as power and water supply, wastewater management, telecommunication, and transportati...Major disasters such as wildfire, tornado, hurricane, tropical storm, and flooding cause disruptions in infrastructure systems such as power and water supply, wastewater management, telecommunication, and transportation facilities. Disruptions in electricity infrastructure have negative impacts on sectors throughout a region, including education, medical services,financial services, and recreation. In this study, we introduced a novel approach to investigate the factors that can be associated with longer restoration time of power service after a hurricane. Considering restoration time as the dependent variable and using a comprehensive set of county-level data, we estimated a generalized accelerated failure time(GAFT) model that accounts for spatial dependence among observations for time to event data. The model fit improved by 12% after considering the effects of spatial correlation in time to event data. Using the GAFT model and Hurricane Irma's impact on Florida as a case study, we examined:(1) differences in electric power outages and restoration rates among different types of power companies—investor-owned power companies, rural and municipal cooperatives;(2) the relationship between the duration of power outage and power system variables;and(3) the relationship between the duration of power outage and socioeconomic attributes. The findings of this study indicate that counties with a higher percentage of customers served by investor-owned electric companies and lower median household income faced power outage for a longer time. This study identified the key factors to predict restoration time of hurricane-induced power outages, allowing disaster management agencies to adopt strategies required for restoration process.展开更多
There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in dire...There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in direct integration methods for these models are analyzed to examine the suitability of DIM. Numerical results are presented and show that the time-step for DIM is about the same as for AIM, and achieves the same accuracy. This is contrary to previous research that reported that there are several sources of numerical errors associated with the direct application of earthquake displacement loading, and a very small time step is required to define the displacement record and to integrate the dynamic equilibrium equation. It is shown in this paper that DIM is as accurate and suitable as, if not more than, AIM for analyzing the response of a structure to uniformly distributed and spatially varying ground motions.展开更多
This paper proposes a Bayesian semiparametric accelerated failure time model for doubly censored data with errors-in-covariates. The authors model the distributions of the unobserved covariates and the regression erro...This paper proposes a Bayesian semiparametric accelerated failure time model for doubly censored data with errors-in-covariates. The authors model the distributions of the unobserved covariates and the regression errors via the Dirichlet processes. Moreover, the authors extend the Bayesian Lasso approach to our semiparametric model for variable selection. The authors develop the Markov chain Monte Carlo strategies for posterior calculation. Simulation studies are conducted to show the performance of the proposed method. The authors also demonstrate the implementation of the method using analysis of PBC data and ACTG 175 data.展开更多
This paper deals with the analysis of accelerated failure time model when the primary covariate is subject to missing. We assume that the true covariate is measured precisely on a randomly chosen validation set, where...This paper deals with the analysis of accelerated failure time model when the primary covariate is subject to missing. We assume that the true covariate is measured precisely on a randomly chosen validation set, whereas auxiliary information for primary covariate is available to all study subjects. The asymptotic properties for the proposed estimator are developed and the simulation studies show that the efficiency gain is remarkable compared to the method using only the validation sample. A real example is also provided as an illustration.展开更多
This paper discusses regression analysis of interval-censored failure time data arising from the accelerated failure time model in the presence of informative censoring.For the problem,a sieve maximum likelihood estim...This paper discusses regression analysis of interval-censored failure time data arising from the accelerated failure time model in the presence of informative censoring.For the problem,a sieve maximum likelihood estimation approach is proposed and in the method,the copula model is employed to describe the relationship between the failure time of interest and the censoring or observation process.Also I-spline functions are used to approximate the unknown functions in the model,and a simulation study is carried out to assess the finite sample performance of the proposed approach and suggests that it works well in practical situations.In addition,an illustrative example is provided.展开更多
文摘Objective:To compare the prognostic factors of mortality among melioidosis patients between lognormal accelerated failure time(AFT),Cox proportional hazards(PH),and Cox PH with time-varying coefficient(TVC)models.Methods:A retrospective study was conducted from 2014 to 2019 among 453 patients who were admitted to Hospital Sultanah Bahiyah,Kedah and Hospital Tuanku Fauziah,Perlis in Northern Malaysia due to confirmed-cultured melioidosis.The prognostic factors of mortality from melioidosis were obtained from AFT survival analysis,and Cox’s models and the findings were compared by using the goodness of fit methods.The analyses were done by using Stata SE version 14.0.Results:A total of 242 patients(53.4%)survived.In this study,the median survival time of melioidosis patients was 30.0 days(95%CI 0.0-60.9).Six significant prognostic factors were identified in the Cox PH model and Cox PH-TVC model.In AFT survival analysis,a total of seven significant prognostic factors were identified.The results were found to be only a slight difference between the identified prognostic factors among the models.AFT survival showed better results compared to Cox's models,with the lowest Akaike information criteria and best fitted Cox-snell residuals.Conclusions:AFT survival analysis provides more reliable results and can be used as an alternative statistical analysis for determining the prognostic factors of mortality in melioidosis patients in certain situations.
文摘Survival of HIV/AIDS patients is crucially dependent on comprehensive and targeted medical interventions such as supply of antiretroviral therapy and monitoring disease progression with CD4 T-cell counts. Statistical modelling approaches are helpful towards this goal. This study aims at developing Bayesian joint models with assumed generalized error distribution (GED) for the longitudinal CD4 data and two accelerated failure time distributions, Lognormal and loglogistic, for the survival time of HIV/AIDS patients. Data are obtained from patients under antiretroviral therapy follow-up at Shashemene referral hospital during January 2006-January 2012 and at Bale Robe general hospital during January 2008-March 2015. The Bayesian joint models are defined through latent variables and association parameters and with specified non-informative prior distributions for the model parameters. Simulations are conducted using Gibbs sampler algorithm implemented in the WinBUGS software. The results of the analyses of the two different data sets show that distributions of measurement errors of the longitudinal CD4 variable follow the generalized error distribution with fatter tails than the normal distribution. The Bayesian joint GED loglogistic models fit better to the data sets compared to the lognormal cases. Findings reveal that patients’ health can be improved over time. Compared to the males, female patients gain more CD4 counts. Survival time of a patient is negatively affected by TB infection. Moreover, increase in number of opportunistic infection implies decline of CD4 counts. Patients’ age negatively affects the disease marker with no effects on survival time. Improving weight may improve survival time of patients. Bayesian joint models with GED and AFT distributions are found to be useful in modelling the longitudinal and survival processes. Thus we recommend the generalized error distributions for measurement errors of the longitudinal data under the Bayesian joint modelling. Further studies may investigate the models with various types of shared random effects and more covariates with predictions.
文摘In this paper, we have studied the nonparameter accelerated failure time (AFT) additive regression model, whose covariates have a nonparametric effect on high-dimensional censored data. We give the asymptotic property of the penalty estimator based on GMCP in the nonparameter AFT model.
基金the U.S.National Science Foundation for the Grant CMMI-1832578 to support the research presented in this article。
文摘Major disasters such as wildfire, tornado, hurricane, tropical storm, and flooding cause disruptions in infrastructure systems such as power and water supply, wastewater management, telecommunication, and transportation facilities. Disruptions in electricity infrastructure have negative impacts on sectors throughout a region, including education, medical services,financial services, and recreation. In this study, we introduced a novel approach to investigate the factors that can be associated with longer restoration time of power service after a hurricane. Considering restoration time as the dependent variable and using a comprehensive set of county-level data, we estimated a generalized accelerated failure time(GAFT) model that accounts for spatial dependence among observations for time to event data. The model fit improved by 12% after considering the effects of spatial correlation in time to event data. Using the GAFT model and Hurricane Irma's impact on Florida as a case study, we examined:(1) differences in electric power outages and restoration rates among different types of power companies—investor-owned power companies, rural and municipal cooperatives;(2) the relationship between the duration of power outage and power system variables;and(3) the relationship between the duration of power outage and socioeconomic attributes. The findings of this study indicate that counties with a higher percentage of customers served by investor-owned electric companies and lower median household income faced power outage for a longer time. This study identified the key factors to predict restoration time of hurricane-induced power outages, allowing disaster management agencies to adopt strategies required for restoration process.
文摘There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in direct integration methods for these models are analyzed to examine the suitability of DIM. Numerical results are presented and show that the time-step for DIM is about the same as for AIM, and achieves the same accuracy. This is contrary to previous research that reported that there are several sources of numerical errors associated with the direct application of earthquake displacement loading, and a very small time step is required to define the displacement record and to integrate the dynamic equilibrium equation. It is shown in this paper that DIM is as accurate and suitable as, if not more than, AIM for analyzing the response of a structure to uniformly distributed and spatially varying ground motions.
基金supported by the National Natural Science Foundation of China under Grant Nos.11171007/A011103,11171230,and 11471024
文摘This paper proposes a Bayesian semiparametric accelerated failure time model for doubly censored data with errors-in-covariates. The authors model the distributions of the unobserved covariates and the regression errors via the Dirichlet processes. Moreover, the authors extend the Bayesian Lasso approach to our semiparametric model for variable selection. The authors develop the Markov chain Monte Carlo strategies for posterior calculation. Simulation studies are conducted to show the performance of the proposed method. The authors also demonstrate the implementation of the method using analysis of PBC data and ACTG 175 data.
基金Supported by National Science Foundation of China grants(Grant No.11571263)
文摘This paper deals with the analysis of accelerated failure time model when the primary covariate is subject to missing. We assume that the true covariate is measured precisely on a randomly chosen validation set, whereas auxiliary information for primary covariate is available to all study subjects. The asymptotic properties for the proposed estimator are developed and the simulation studies show that the efficiency gain is remarkable compared to the method using only the validation sample. A real example is also provided as an illustration.
基金supported by the National Natural Science Foundation of China under Grant No.11671168the Science and Technology Developing Plan of Jilin Province under Grant No.20200201258JC。
文摘This paper discusses regression analysis of interval-censored failure time data arising from the accelerated failure time model in the presence of informative censoring.For the problem,a sieve maximum likelihood estimation approach is proposed and in the method,the copula model is employed to describe the relationship between the failure time of interest and the censoring or observation process.Also I-spline functions are used to approximate the unknown functions in the model,and a simulation study is carried out to assess the finite sample performance of the proposed approach and suggests that it works well in practical situations.In addition,an illustrative example is provided.