Hydrogenations and air oxidations usually have low apparent reaction rate,generally controlled by mass transfer rate,and widely exist in the modern chemical manufacturing process.The key to increase the mass transfer ...Hydrogenations and air oxidations usually have low apparent reaction rate,generally controlled by mass transfer rate,and widely exist in the modern chemical manufacturing process.The key to increase the mass transfer rate is the reduction of the liquid film resistance 1/kLa.In this work,the original concept of microinterface intensification for mass transfer and then for these reactions has been proposed.We derived the regulation model and set up the mathematical calculation method of micron-scale gas-liquid interface structure on mass transfer and reaction,designed the mechanical energy exchange device that can produce gas-liquid microinterface system on a large scale,and established the OMIS system which is able on line to measure the diameter and distribution of millions of microbubbles,interface area a and mass transfer film thicknessδM,as well as developed a series of microinterface intensified reactor systems(MIRs)for the applications of hydrogenation and air oxidation processes.It is believed that this research will provide an up-to-date development for the intensification of hydrogenation and air oxidation reactions.展开更多
In this paper,the formation mechanism of mesoporous CeO_(2) synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion,as well as the structure-activity relationship between the...In this paper,the formation mechanism of mesoporous CeO_(2) synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion,as well as the structure-activity relationship between them were studied in depth.The self-assembly process and physicochemical properties of CeO_(2) were characterized by thermogravimetry analysis,powder X-ray diffraction,N2 adsorption/desorption,high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy techniques.Characterization results show that Ce-MOF is completely decomposed into pure mesoporous CeO_(2) when the decomposition temperature is higher than 400℃.At this threshold temperature,CeO_(2)(400) has the largest specific surface area and pore volume of 114 m^(2)/g and 0.152 cm^(3)/g,respectively.CeO_(2)(400) exhibits very high catalytic activity for benzene combustion,which can completely catalyze the degradation of benzene at 260℃.Meanwhile,the mesoporous CeO_(2)(400) supported Pt nanocrystalline catalysts were prepared by high temperature solution-phase reduction method.Pt/CeO_(2)(400)can completely degrade benzene at about 200℃ and represents high durability and good waterresistance for benzene combustion during 100 h of continuous reaction.展开更多
基金the financial support of National Natural Science Foundation of China(No.91634104,21776122 and 22178391)National Key Research&Development Program of China(No.2018YFB0604605)Jiangsu Science and Technology Plan Project(No.BM2018007)。
文摘Hydrogenations and air oxidations usually have low apparent reaction rate,generally controlled by mass transfer rate,and widely exist in the modern chemical manufacturing process.The key to increase the mass transfer rate is the reduction of the liquid film resistance 1/kLa.In this work,the original concept of microinterface intensification for mass transfer and then for these reactions has been proposed.We derived the regulation model and set up the mathematical calculation method of micron-scale gas-liquid interface structure on mass transfer and reaction,designed the mechanical energy exchange device that can produce gas-liquid microinterface system on a large scale,and established the OMIS system which is able on line to measure the diameter and distribution of millions of microbubbles,interface area a and mass transfer film thicknessδM,as well as developed a series of microinterface intensified reactor systems(MIRs)for the applications of hydrogenation and air oxidation processes.It is believed that this research will provide an up-to-date development for the intensification of hydrogenation and air oxidation reactions.
基金Project supported by Zhejiang Public Welfare Technology Research Project(LGG19B070003)the Foundation of Science and Technology of the Shaoxing City(2018C10019)the National Natural Science Foundation of China(21577094)。
文摘In this paper,the formation mechanism of mesoporous CeO_(2) synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion,as well as the structure-activity relationship between them were studied in depth.The self-assembly process and physicochemical properties of CeO_(2) were characterized by thermogravimetry analysis,powder X-ray diffraction,N2 adsorption/desorption,high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy techniques.Characterization results show that Ce-MOF is completely decomposed into pure mesoporous CeO_(2) when the decomposition temperature is higher than 400℃.At this threshold temperature,CeO_(2)(400) has the largest specific surface area and pore volume of 114 m^(2)/g and 0.152 cm^(3)/g,respectively.CeO_(2)(400) exhibits very high catalytic activity for benzene combustion,which can completely catalyze the degradation of benzene at 260℃.Meanwhile,the mesoporous CeO_(2)(400) supported Pt nanocrystalline catalysts were prepared by high temperature solution-phase reduction method.Pt/CeO_(2)(400)can completely degrade benzene at about 200℃ and represents high durability and good waterresistance for benzene combustion during 100 h of continuous reaction.