期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
High-resolution structure-from-motion models covering 160 km-long surface ruptures of the 2021 M_(W)7.4 Madoi earthquake in northern Qinghai-Tibetan Plateau 被引量:3
1
作者 Jing Liu-Zeng Wenqian Yao +9 位作者 Xiaoli Liu Yanxiu Shao Wenxin Wang Longfei Han Yan Wang Xianyang Zeng Jinyang Li Zijun Wang Zhijun Liu Hongwei Tu 《Earthquake Research Advances》 CSCD 2022年第2期38-48,共11页
The May 222021 M_(W)7.4 Madoi,Qinghai,China earthquake presented a rare opportunity to apply the modern unmanned aerial vehicle(UAV)photography method in extreme altitude and weather conditions to image surface ruptur... The May 222021 M_(W)7.4 Madoi,Qinghai,China earthquake presented a rare opportunity to apply the modern unmanned aerial vehicle(UAV)photography method in extreme altitude and weather conditions to image surface ruptures and near-field effects of earthquake-related surface deformations in the remote Tibet.High-resolution aerial photographs were acquired in the days immediately following the mainshock.The complex surface rupture patterns associated with this event were covered comprehensively at 3-6 cm resolution.This effort represents the first time that an earthquake rupture in the interior of the Qinghai-Tibetan Plateau has been fully and systematically captured by such high-resolution imagery,with an unprecedented level of detail,over its entire length.The dataset has proven valuable in documenting subtle and transient rupture features,such as the significant mole-tracks and opening fissures,which were ubiquitous coseismically but degraded during the subsequent summer storm season.Such high-quality imagery also helps to document with high fidelity the fractures of the surface rupture zone(supplements of this paper),the pattern related to how the faults ruptured to the ground surface,and the distribution of off-fault damage.In combination with other ground-based mapping efforts,the data will be analyzed in the following months to better understand the mechanics of earthquake rupture related to the fault zone rheology,rupture dynamics,and frictional properties along with the fault interface. 展开更多
关键词 UAV photography Earthquake surface rupture structure-from-motion 2021 M_(W)7.4 Madoi earthquake
下载PDF
Structure-from-Motion Photogrammetry and Rare Earth Oxides can quantify diffuse and convergent soil loss and source apportionment
2
作者 Pia Benaud Karen Anderson +3 位作者 Mike R.James Timothy A.Quine John N.Quinton Richard E.Brazier 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第4期633-648,共16页
Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible,convergent fluvial pathways(also known as rills)and the subtle nature of the less-visible,diffuse pathways(inte... Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible,convergent fluvial pathways(also known as rills)and the subtle nature of the less-visible,diffuse pathways(interrill areas).The aim of this study was to use Rare Earth Oxide(REO)tracers and Structure-from-Motion(SfM)photogrammetry to elucidate retrospective information about soil erosion rates and sediment sources during different soil erosion conditions,within a controlled laboratory environment.The experimental conditions created erosion events consistent with diffuse and convergent erosion processes.REO tracers allowed the sediment transport distances of over 2 m to be described,and helped resolved the relative contribution of diffuse and convergent soil erosion;interrill areas were also iden-tified as a significant sediment sources soil loss under convergent erosion conditions.While the potential for SfM photogrammetry to resolve sub-millimetre elevations changes was demonstrated,under some conditions non-erosional changes in surface elevation,such as compaction,exceeded volumes of soil loss via diffuse erosion.The discrepancies between SfM Photogrammetry calculations and REO tagged sediment export were beneficial,identifying that during soil erosion events sediment in both aggregate and particle form is deposited within the convergent features,even when the rill extended the full length of the soil surface.The combination of SfM photogrammetry and REO tracers has provided a novel platform for building a spatial understanding of patterns of soil loss and source apportionment between rill and interrill erosion. 展开更多
关键词 Soil erosion structure-from-motion Photogrammetry Rare Earth Oxides Tracers Sediment Rainfall simulator Sheetwash Rilling Interrill
原文传递
A Skeletal Camera Network for Close-range Images with a Data Driven Approach in Analyzing Stereo Configuration
3
作者 Zhihua XU Lingling QU 《Journal of Geodesy and Geoinformation Science》 2022年第4期23-37,共15页
Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,t... Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,the base-height ratio,intersection angle,overlap,and ground control points,etc.,which are rarely quantified in real-world applications.To answer this question,in this paper,we take a data-driven approach by analyzing hundreds of terrestrial stereo image configurations through a typical SfM algorithm.Two main meta-parameters with respect to base-height ratio and intersection angle are analyzed.Following the results,we propose a Skeletal Camera Network(SCN)and embed it into the SfM to lead to a novel SfM scheme called SCN-SfM,which limits tie-point matching to the remaining connected image pairs in SCN.The proposed method was applied in three terrestrial datasets.Experimental results have demonstrated the effectiveness of the proposed SCN-SfM to achieve 3D geometry with higher accuracy and fast time efficiency compared to the typical SfM method,whereas the completeness of the geometry is comparable. 展开更多
关键词 3D geometry reconstruction geometric factors skeletal camera network structure-from-motion tie-point matching terrestrial stereo images
下载PDF
A low-overhead asynchronous consensus framework for distributed bundle adjustment
4
作者 Zhuo-hao LIU Chang-yu DIAO +1 位作者 Wei XING Dong-ming LU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第10期1442-1454,共13页
Generally,the distributed bundle adjustment(DBA)method uses multiple worker nodes to solve the bundle adjustment problems and overcomes the computation and memory storage limitations of a single computer.However,the p... Generally,the distributed bundle adjustment(DBA)method uses multiple worker nodes to solve the bundle adjustment problems and overcomes the computation and memory storage limitations of a single computer.However,the performance considerably degrades owing to the overhead introduced by the additional block partitioning step and synchronous waiting.Therefore,we propose a low-overhead consensus framework.A partial barrier based asynchronous method is proposed to early achieve consensus with respect to the faster worker nodes to avoid waiting for the slower ones.A scene summarization procedure is designed and integrated into the block partitioning step to ensure that clustering can be performed on the small summarized scene.Experiments conducted on public datasets show that our method can improve the worker node utilization rate and reduce the block partitioning time.Also,sample applications are demonstrated using our large-scale culture heritage datasets. 展开更多
关键词 structure-from-motion Distributed bundle adjustment OVERHEAD Asynchronous consensus Partial barrier Bipartite graph summarization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部