BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To ...BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To investigate the effects of nursing interventions with three-dimensional quality assessment on the efficacy and disease management ability of patients undergoing esophageal cancer surgery.METHODS In this prospective study,the control group received routine nursing,and the intervention group additionally received a three-dimensional quality assessment intervention based on the above routine care.Self-efficacy and patient disease management abilities were evaluated using the General Self-Efficacy Scale(GSES)and Exercise of Self-Care Agency scale,respectively.IBM SPSS Statistics for Windows,version 17.0,was used for the data processing.RESULTS This study recruited 112 patients who were assigned to the control and experi-mental groups(n=56 per group).Before the intervention,there was no significant difference in GSES scores between the two groups(P>0.05).After the inter-vention,the GSES scores of both groups increased,with the experimental group showing higher values(P<0.05).At the time of discharge and three months after discharge,the scores for positive attitudes,self-stress reduction,and total score of health promotion in the experimental group were higher than those in the control group(P<0.05).CONCLUSION The implementation of a three-dimensional quality structure model for postoperative patients with esophageal cancer can effectively improve their self-management ability and self-efficacy of postoperative patients.展开更多
The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water qu...The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.展开更多
A three-dimensional coupled physical and water quality model was developed and applied to the Jiaozhou Bay to study water quality involving nutrients, biochemical oxygen demand, dissolved oxygen, and phytoplankton tha...A three-dimensional coupled physical and water quality model was developed and applied to the Jiaozhou Bay to study water quality involving nutrients, biochemical oxygen demand, dissolved oxygen, and phytoplankton that are closely related to eutrophication process. The physical model is a modified ECOM-si version with inclusion of flooding/draining processes over the intertidal zone. The water quality model is based on WASP5 which quantifies processes governing internal nutrients cycling, dissolved oxygen balance and phytoplankton growth. The model was used to simulate the spatial distribution and the temporal variation of water quality in the Jiaozhou Bay for the period of May 2005 to May 2006. In addition, the effect of reduction of riverine nutrients load was simulated and evaluated. The simulated results show that under the influence of nutrients discharged from river, the concentrations of nutrients and phytoplankton were higher in the northwest and northeast of the bay, and decreased from the inner bay to the outer. Affected by strong tidal mixing, the concentrations of all state variables were vertically homogeneous except in the deeper regions where a small gradient was found. Obvious seasonal variation of phytoplankton biomass was found, which exhibited two peaks in March and July, respectively. The variation of riverine waste loads had remarkable impact on nutrients concentration in coastal areas, but slightly altered the distribution in the center of the bay.展开更多
In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method wit...In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality.展开更多
BACKGROUND Benign gallbladder diseases have become a high-prevalence condition not only in China but also worldwide.The main types of benign gallbladder diseases include gallbladder polyps,acute and chronic cholecysti...BACKGROUND Benign gallbladder diseases have become a high-prevalence condition not only in China but also worldwide.The main types of benign gallbladder diseases include gallbladder polyps,acute and chronic cholecystitis,and gallstones,with gallstones being the most common,accounting for over 70%of cases.Although the mortality rate of benign gallbladder diseases is low,they carry obvious potential risks.Studies have shown that an increased incidence of benign gallbladder diseases can increase the risk of cardiovascular diseases and gallbladder cancer,resulting in a substantial disease burden on patients and their families.AIM To assess the medical utility of the Configuration-Procedure-Consequence(CPC)three-dimensional quality evaluation model in modulating the prognosis of laparoscopic cholecystectomy patients.METHODS A total of 98 patients who underwent laparoscopic cholecystectomy in our hospital from February 2020 to January 2022 were selected as the subjects.According to the random number table method,they were divided into a study group and a control group,with 49 patients in each group.The control group received routine perioperative care,while the study group had the addition of the CPC three-dimensional quality evaluation.The postoperative recovery-related indicators(time to first flatus,time to oral intake,time to ambulation,hospital stay),stress indicators(cortisol and adrenaline levels),distinctions in anxiety and RESULTS The time to first flatus,time to oral intake,time to ambulation,and hospital stay of the study group patients were obviously lower than those of the control group patients,with statistical significance(P<0.05).On the 1st day after admission,there were no obvious distinctions in cortisol and adrenaline levels in blood samples,as well as in the Self-Rating Anxiety Scale(SAS)and Self-Rating Depression Scale(SDS)scores between the study group and the control group(P>0.05).However,on the 3rd day after surgery,the cortisol and adrenaline levels,as well as SAS and SDS scores of the study group patients,were obviously lower than those of the control group patients(P<0.05).The study group had 2 cases of incisional infection and 1 case of pulmonary infection,with a total incidence of complications of 6.12%(3/49),which was obviously lower than the 20.41%(10/49)in the control group(P<0.05).CONCLUSION Implementing the CPC three-dimensional quality evaluation model for patients undergoing laparoscopic cholecystectomy can help accelerate their perioperative recovery process,alleviate perioperative stress symptoms,mitigate anxiety,depression,and other adverse emotions,and to some extent,reduce the incidence of perioperative complications.展开更多
To address the challenge of visualizing internal defects within castings, ultrasonic nondestructive testing technology has been introduced for the detection and characterization of internal defects in castings. Ultras...To address the challenge of visualizing internal defects within castings, ultrasonic nondestructive testing technology has been introduced for the detection and characterization of internal defects in castings. Ultrasonic testing is widely utilized for detecting and characterizing internal defects in materials, thanks to its strong penetration ability, wide testing area, and fast scanning speed. However, traditional ultrasonic testing primarily relies on one-dimensional waveforms or two-dimensional images to analyze internal defects in billets, which hinders intuitive characterization of defect quantity, size, spatial distribution, and other relevant information. Consequently, a three-dimensional (3D) layered characterization method of billets internal quality based on scanning acoustic microscope (SAM) is proposed. The method starts with a layered focus scanning of the billet using SAM and pre-processing the obtained sequence of ultrasonic images. Next, the ray casting is employed to reconstruct 3D shape of defects in billets, allowing for characterization of their quality by obtaining characteristic information on defect spatial distributions, quantity, and sizes. To validate the effectiveness of the proposed method, specimens of 42CrMo billets are prepared using five different processes, and the method is employed to evaluate their internal quality. Finally, a comparison between the ultrasonic image and the metallographic image reveals a difference in dimensional accuracy of only 2.94%. The results indicate that the new method enables visualization of internal defect information in billets, serving as a valuable complement to the traditional method of characterizing their internal quality.展开更多
Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positio...Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.展开更多
Since each rock joint is unique by nature,the utilization of replicas in direct shear testing is required to carry out experimental parameter studies.However,information about the ability of the replicas to simulate t...Since each rock joint is unique by nature,the utilization of replicas in direct shear testing is required to carry out experimental parameter studies.However,information about the ability of the replicas to simulate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.With the aim to facilitate generation of high-quality direct shear test data from replicas,a novel component in the testing procedure is introduced by presenting two parameters for geometric quality assurance.The parameters are derived from surface comparisons of three-dimensional(3D)scanning data of the rock joint and its replicas.The first parameter,smf,captures morphological deviations between the replica and the rock joint surfaces.smf is derived as the standard deviation of the deviations between the coordinate points of the replica and the rock joint.Four sources of errors introduced in the replica manufacturing process employed in this study could be identified.These errors could be minimized,yielding replicas with smf0.06 mm.The second parameter is a vector,VHp100,which describes deviations with respect to the shear direction.It is the projection of the 100 mm long normal vector of the best-fit plane of the replica joint surface to the corresponding plane of the rock joint.VHp100was found to be less than or equal to 0.36 mm in this study.Application of these two geometric quality assurance parameters demonstrates that it is possible to manufacture replicas with high geometric similarity to the rock joint.In a subsequent paper(part 2),smf and VHp100 are incorporated in a novel quality assurance method,in which the parameters shall be evaluated prior to direct shear testing.Replicas having parameter values below established thresholds shall have a known and narrow dispersion and imitate the shear mechanical behavior of the rock joint.展开更多
People currentiy pay attention to a hotspot problem that how industrial production is evaluated and controlled based on sustainable development theory. Quality is one of the important indexes. Two mainstream theories ...People currentiy pay attention to a hotspot problem that how industrial production is evaluated and controlled based on sustainable development theory. Quality is one of the important indexes. Two mainstream theories guide us to realize the industrial sustainable development: mainly the circular economy and sustainable manufacturing are introduced. The basic characteristics of the sustainable manufacturing are introduced, and that quality management is important contents of sustainable development is indicated. Based on circular economy and sustainable manufacture theories, the drawbacks in the existing quality management models are analyzed. The requests that satisfy the big system "environment- society - economy" are summarized to build up a model. A Chinese traditional cultural principle is applied and the relevant contents are sublimated as the platform to set up the model. The new quality management concept models are put forward "T- D- R" three-dimensional structures and "ecological quality loop" model, from which the new quality concepts are formed The paper elaborates the contents and the process of setting up the models. The big quality problems of the system can be handled by the new quality concept and model that are validated in practice.展开更多
Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas ...Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas to imitate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.In this study,a novel method is presented for geometric quality assurance of replicas.The aim is to facilitate generation of high-quality direct shear testing data as a prerequisite for reliable subsequent analyses of the results.In Part 1 of this study,two quality assurance parameters,smf and V_(Hp100),are derived and their usefulness for evaluation of geometric deviations,i.e.geometric reproducibility,is shown.In Part 2,the parameters are validated by showing a correlation between the parameters and the shear mechanical behavior,which qualifies the parameters for usage in the quality assurance method.Unique results from direct shear tests presenting comparisons between replicas and the rock joint show that replicas fulfilling proposed threshold values of σ_(mf)<0.06 mm and|V_(Hp100)|<0.2 mm have a narrow dispersion and imitate the shear mechanical behavior of the rock joint in all aspects apart from having a slightly lower peak shear strength.The wear in these replicas,which have similar morphology as the rock joint,is in the same areas as in the rock joint.The wear is slightly larger in the rock joint and therefore the discrepancy in peak shear strength derives from differences in material properties,possibly from differences in toughness.It is shown by application of the suggested method that the quality assured replicas manufactured following the process employed in this study phenomenologically capture the shear strength characteristics,which makes them useful in parameter studies.展开更多
A three-dimensional eutrophication model was applied to assist the management of Dahuofang Reservoir in China.Transport processes were obtained from the three-dimensional,finite volume hydrodynamic model.The hydrodyna...A three-dimensional eutrophication model was applied to assist the management of Dahuofang Reservoir in China.Transport processes were obtained from the three-dimensional,finite volume hydrodynamic model.The hydrodynamic model was verified for a one-year time period in 2006.Our simulation reproduced intra-annual variation of stratification.The simulated variation of vertical thermal structures also matched observations.The water quality model included 8 state variables,including dissolved oxygen,phytoplankton as carbon,carbonaceous biochemical oxygen demand,ammonium nitrogen,nitrate and nitrite nitrogen,ortho-phosphorus,organic nitrogen,and organic phosphorus.Sensitivity of the parameters has been analyzed to decide which process would affect the water quality in the simulation.The water quality verification suggested the model successfully computed the temporal cycles and spatial distributions of key water quality components.The comparison between water quality components before and after the first phase of the water conveyance project suggests that the project has a slight effect on the reservoir ecosystem.The model could be used as a tool to guide physico-biological engineering design or management strategies for Dahuofang Reservoir.展开更多
Objective To study a way to establish a drug inspection evaluation system in China.Methods Through literature research,behavioral event interviews,Delphi expert interviews,and other methods,the theory of“threedimensi...Objective To study a way to establish a drug inspection evaluation system in China.Methods Through literature research,behavioral event interviews,Delphi expert interviews,and other methods,the theory of“threedimensional quality structure model”was used to extract,screen,and construct a set of evaluation indicator system for drug inspection,including 3 first-level indicators,11 second-level indicators,and 47 third-level indicators.Results and Conclusion An effective management tool to evaluate the quality of drug inspection has not yet been formed in China.According to the requirements of laws,regulations,and departmental rules,combined with the mature drug inspection mechanism of international drug regulatory agencies or organizations and the international quality management theory,some management tools are put forward to improve the quality system of drug supervision.展开更多
Objective:To study the correlation between tumor size,radiation source intensity,prescription dose,and source dwell time in afterloading treatment plan,and to establish a rapid quality control method for afterloading ...Objective:To study the correlation between tumor size,radiation source intensity,prescription dose,and source dwell time in afterloading treatment plan,and to establish a rapid quality control method for afterloading treatment plan.Methods:A total of 181 patients with gynecological tumor were enrolled in our hospital.A total of 84 patients were installed with three tubes of Fletcher'applicator,58 patients with single uterine tube and 39 patients with vaginal applicator.Each patient was scanned with CT before treatment,and the target area and organs were delineated by doctors.The treatment plan was optimized by IPSA.The planned source intensity,prescription dose,source residence time and tumor volume of each case were recorded and the CI,RV,and k value were calculated,The CI distribution characteristics and the relationship with RV value were analyzed.In addition,46 cases of gynecological tumor patients'afterloading plan used this method for quality control verification.Results:The CI of the three kinds of applicators was normal distribution.The average Ci of Fletcher applicator was 0.720±0.067,k=1394,r=0.894,the average CI of Fletcher applicator was 0.697±0.076,k=1428,r=0.940,the average CI of vaginal applicator was 0.742±0.067,k=1362,r=0.909.Conclusion:Using this method,we could quickly evaluate the target volume,radiation source intensity,prescription dose and treatment time,to determine the cause of deviation according to the feedback results,ensuring that the afterloading treatment plan can be implemented efficiently quickly,and accurately in accordance with the clinical requirements.展开更多
Human induced pluripotent stem cells(hiPSCs)are invaluable resources for producing high-quality differentiated cells in unlimited quantities for both basic research and clinical use.They are particularly useful for st...Human induced pluripotent stem cells(hiPSCs)are invaluable resources for producing high-quality differentiated cells in unlimited quantities for both basic research and clinical use.They are particularly useful for studying human disease mechanisms in vitro by making it possible to circumvent the ethical issues of human embryonic stem cell research.However,significant limitations exist when using conventional flat culturing methods especially concerning cell expansion,differentiation efficiency,stability maintenance and multicellular 3D structure establishment,differentiation prediction.Embryoid bodies(EBs),the multicellular aggregates spontaneously generated from iPSCs in the suspension system,might help to address these issues.Due to the unique microenvironment and cell communication in EB structure that a 2D culture system cannot achieve,EBs have been widely applied in hiPSC-derived differentiation and show significant advantages especially in scaling up culturing,differentiation efficiency enhancement,ex vivo simulation,and organoid establishment.EBs can potentially also be used in early prediction of iPSC differentiation capability.To improve the stability and feasibility of EB-mediated differentiation and generate high quality EBs,critical factors including iPSC pluripotency maintenance,generation of uniform morphology using micro-pattern 3D culture systems,proper cellular density inoculation,and EB size control are discussed on the basis of both published data and our own laboratory experiences.Collectively,the production of a large quantity of homogeneous EBs with high quality is important for the stability and feasibility of many PSCs related studies.展开更多
The National University Corporation Tsukuba University of Technology(NTUT) is the only institute of higher education for the hearing and the visually impaired in Japan. In our university, hearing or visually impaire...The National University Corporation Tsukuba University of Technology(NTUT) is the only institute of higher education for the hearing and the visually impaired in Japan. In our university, hearing or visually impaired students are studying to be technicians after they graduate, toward social independence. From previous experience of higher education for students with disabilities, effects are increased when modeling is used by the teachers involved in professional education. In the Mechanical Engineering Course, we are using modeling, to match the drawing and shape for beginning students. It includes support for enhancing one's view, and how to draw out the ability of mechanical engineering students for the basics. For students to study Mechanical Design and Drawing, Modeling of Gear Pump, Jack and Globe Valve are easily shown through drawings and the operation of each mechanism through sample drawings in the textbook. It is possible to make an opportunity to think about the machine mechanism. It will be shown by students' works. The assembling of the model triggers the need for form accuracy by making a function, and improves the quality of learning. It is possible that a three-dimensional molding machine can be produced through experiential learning by the model, and modeling with the dimension numerical data. Moreover, it is also embodied in a three-dimensional modeling which results in the image processing programming created. Confirming the improvement of the program through the shape with the quality. In the Department of Synthetic Design, students have chances to realize and self-evaluate from the design of the lamp shade with a complicated shape. In the Faculty of Health Science from Department of Health, high quality teaching of visually-impaired students through the use of bone model teaching materials has become possible in the medical-related courses.展开更多
Dalian Bay is a large coastal embayment situated in the Yellow Sea. The bay is heavily industrialised and the surrounding water they receives large amounts of industrial effluent. A numerical model of water quality in...Dalian Bay is a large coastal embayment situated in the Yellow Sea. The bay is heavily industrialised and the surrounding water they receives large amounts of industrial effluent. A numerical model of water quality in Dalian Bay has been developed to study the long-term transport and fate of pollutants in the system. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter.The waters of Dalisn Bay are stratified due to the density variations resulting from the seasonal variations in meteorological conditions. In order to simulate the vertical structure of the hydrodynamics and pollutant transport in the bay the three-dimensional segmented and layered hydrodynamic model has been utilised. The results are used to drive the water quality model which simulates full oxygen and nutrient balance, primary productivity and the transport,reaction mechanism and fate of pollutants. The model has been used to study seasonal effects.The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.展开更多
文摘BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To investigate the effects of nursing interventions with three-dimensional quality assessment on the efficacy and disease management ability of patients undergoing esophageal cancer surgery.METHODS In this prospective study,the control group received routine nursing,and the intervention group additionally received a three-dimensional quality assessment intervention based on the above routine care.Self-efficacy and patient disease management abilities were evaluated using the General Self-Efficacy Scale(GSES)and Exercise of Self-Care Agency scale,respectively.IBM SPSS Statistics for Windows,version 17.0,was used for the data processing.RESULTS This study recruited 112 patients who were assigned to the control and experi-mental groups(n=56 per group).Before the intervention,there was no significant difference in GSES scores between the two groups(P>0.05).After the inter-vention,the GSES scores of both groups increased,with the experimental group showing higher values(P<0.05).At the time of discharge and three months after discharge,the scores for positive attitudes,self-stress reduction,and total score of health promotion in the experimental group were higher than those in the control group(P<0.05).CONCLUSION The implementation of a three-dimensional quality structure model for postoperative patients with esophageal cancer can effectively improve their self-management ability and self-efficacy of postoperative patients.
基金The project is supported by The National Natural Science Foundation of China
文摘The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.
文摘A three-dimensional coupled physical and water quality model was developed and applied to the Jiaozhou Bay to study water quality involving nutrients, biochemical oxygen demand, dissolved oxygen, and phytoplankton that are closely related to eutrophication process. The physical model is a modified ECOM-si version with inclusion of flooding/draining processes over the intertidal zone. The water quality model is based on WASP5 which quantifies processes governing internal nutrients cycling, dissolved oxygen balance and phytoplankton growth. The model was used to simulate the spatial distribution and the temporal variation of water quality in the Jiaozhou Bay for the period of May 2005 to May 2006. In addition, the effect of reduction of riverine nutrients load was simulated and evaluated. The simulated results show that under the influence of nutrients discharged from river, the concentrations of nutrients and phytoplankton were higher in the northwest and northeast of the bay, and decreased from the inner bay to the outer. Affected by strong tidal mixing, the concentrations of all state variables were vertically homogeneous except in the deeper regions where a small gradient was found. Obvious seasonal variation of phytoplankton biomass was found, which exhibited two peaks in March and July, respectively. The variation of riverine waste loads had remarkable impact on nutrients concentration in coastal areas, but slightly altered the distribution in the center of the bay.
基金Supported by the Innovative Research Groups of National Natural Science Foundation of China(No.51321065)the Major Science and Technology Program for Water Pollution Control and Treatment(2012ZX07101-008)the National Natural Science Foundation of China(No.51439005)
文摘In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality.
基金reviewed and approved by the Institutional Review Board of The Second People's Hospital of Lianyungang(Approval No.LW-20220707001).
文摘BACKGROUND Benign gallbladder diseases have become a high-prevalence condition not only in China but also worldwide.The main types of benign gallbladder diseases include gallbladder polyps,acute and chronic cholecystitis,and gallstones,with gallstones being the most common,accounting for over 70%of cases.Although the mortality rate of benign gallbladder diseases is low,they carry obvious potential risks.Studies have shown that an increased incidence of benign gallbladder diseases can increase the risk of cardiovascular diseases and gallbladder cancer,resulting in a substantial disease burden on patients and their families.AIM To assess the medical utility of the Configuration-Procedure-Consequence(CPC)three-dimensional quality evaluation model in modulating the prognosis of laparoscopic cholecystectomy patients.METHODS A total of 98 patients who underwent laparoscopic cholecystectomy in our hospital from February 2020 to January 2022 were selected as the subjects.According to the random number table method,they were divided into a study group and a control group,with 49 patients in each group.The control group received routine perioperative care,while the study group had the addition of the CPC three-dimensional quality evaluation.The postoperative recovery-related indicators(time to first flatus,time to oral intake,time to ambulation,hospital stay),stress indicators(cortisol and adrenaline levels),distinctions in anxiety and RESULTS The time to first flatus,time to oral intake,time to ambulation,and hospital stay of the study group patients were obviously lower than those of the control group patients,with statistical significance(P<0.05).On the 1st day after admission,there were no obvious distinctions in cortisol and adrenaline levels in blood samples,as well as in the Self-Rating Anxiety Scale(SAS)and Self-Rating Depression Scale(SDS)scores between the study group and the control group(P>0.05).However,on the 3rd day after surgery,the cortisol and adrenaline levels,as well as SAS and SDS scores of the study group patients,were obviously lower than those of the control group patients(P<0.05).The study group had 2 cases of incisional infection and 1 case of pulmonary infection,with a total incidence of complications of 6.12%(3/49),which was obviously lower than the 20.41%(10/49)in the control group(P<0.05).CONCLUSION Implementing the CPC three-dimensional quality evaluation model for patients undergoing laparoscopic cholecystectomy can help accelerate their perioperative recovery process,alleviate perioperative stress symptoms,mitigate anxiety,depression,and other adverse emotions,and to some extent,reduce the incidence of perioperative complications.
基金supported by the joint funds of the National Natural Science Foundation of China (Grant No. U22A20186)the Open Foundation of Key Laboratory of Metallurgical Equipment and Control Technology (Wuhan University of Science and Technology) Ministry of Education (Grant No. MECOF2019804)the Foundation of Key Technologies R&D Program of Guangdong Province (Grant No. 2020B0101130007).
文摘To address the challenge of visualizing internal defects within castings, ultrasonic nondestructive testing technology has been introduced for the detection and characterization of internal defects in castings. Ultrasonic testing is widely utilized for detecting and characterizing internal defects in materials, thanks to its strong penetration ability, wide testing area, and fast scanning speed. However, traditional ultrasonic testing primarily relies on one-dimensional waveforms or two-dimensional images to analyze internal defects in billets, which hinders intuitive characterization of defect quantity, size, spatial distribution, and other relevant information. Consequently, a three-dimensional (3D) layered characterization method of billets internal quality based on scanning acoustic microscope (SAM) is proposed. The method starts with a layered focus scanning of the billet using SAM and pre-processing the obtained sequence of ultrasonic images. Next, the ray casting is employed to reconstruct 3D shape of defects in billets, allowing for characterization of their quality by obtaining characteristic information on defect spatial distributions, quantity, and sizes. To validate the effectiveness of the proposed method, specimens of 42CrMo billets are prepared using five different processes, and the method is employed to evaluate their internal quality. Finally, a comparison between the ultrasonic image and the metallographic image reveals a difference in dimensional accuracy of only 2.94%. The results indicate that the new method enables visualization of internal defect information in billets, serving as a valuable complement to the traditional method of characterizing their internal quality.
基金supported by the National Natural Science Foundation of China(Grant No.51379109)
文摘Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.
文摘Since each rock joint is unique by nature,the utilization of replicas in direct shear testing is required to carry out experimental parameter studies.However,information about the ability of the replicas to simulate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.With the aim to facilitate generation of high-quality direct shear test data from replicas,a novel component in the testing procedure is introduced by presenting two parameters for geometric quality assurance.The parameters are derived from surface comparisons of three-dimensional(3D)scanning data of the rock joint and its replicas.The first parameter,smf,captures morphological deviations between the replica and the rock joint surfaces.smf is derived as the standard deviation of the deviations between the coordinate points of the replica and the rock joint.Four sources of errors introduced in the replica manufacturing process employed in this study could be identified.These errors could be minimized,yielding replicas with smf0.06 mm.The second parameter is a vector,VHp100,which describes deviations with respect to the shear direction.It is the projection of the 100 mm long normal vector of the best-fit plane of the replica joint surface to the corresponding plane of the rock joint.VHp100was found to be less than or equal to 0.36 mm in this study.Application of these two geometric quality assurance parameters demonstrates that it is possible to manufacture replicas with high geometric similarity to the rock joint.In a subsequent paper(part 2),smf and VHp100 are incorporated in a novel quality assurance method,in which the parameters shall be evaluated prior to direct shear testing.Replicas having parameter values below established thresholds shall have a known and narrow dispersion and imitate the shear mechanical behavior of the rock joint.
文摘People currentiy pay attention to a hotspot problem that how industrial production is evaluated and controlled based on sustainable development theory. Quality is one of the important indexes. Two mainstream theories guide us to realize the industrial sustainable development: mainly the circular economy and sustainable manufacturing are introduced. The basic characteristics of the sustainable manufacturing are introduced, and that quality management is important contents of sustainable development is indicated. Based on circular economy and sustainable manufacture theories, the drawbacks in the existing quality management models are analyzed. The requests that satisfy the big system "environment- society - economy" are summarized to build up a model. A Chinese traditional cultural principle is applied and the relevant contents are sublimated as the platform to set up the model. The new quality management concept models are put forward "T- D- R" three-dimensional structures and "ecological quality loop" model, from which the new quality concepts are formed The paper elaborates the contents and the process of setting up the models. The big quality problems of the system can be handled by the new quality concept and model that are validated in practice.
文摘Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas to imitate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.In this study,a novel method is presented for geometric quality assurance of replicas.The aim is to facilitate generation of high-quality direct shear testing data as a prerequisite for reliable subsequent analyses of the results.In Part 1 of this study,two quality assurance parameters,smf and V_(Hp100),are derived and their usefulness for evaluation of geometric deviations,i.e.geometric reproducibility,is shown.In Part 2,the parameters are validated by showing a correlation between the parameters and the shear mechanical behavior,which qualifies the parameters for usage in the quality assurance method.Unique results from direct shear tests presenting comparisons between replicas and the rock joint show that replicas fulfilling proposed threshold values of σ_(mf)<0.06 mm and|V_(Hp100)|<0.2 mm have a narrow dispersion and imitate the shear mechanical behavior of the rock joint in all aspects apart from having a slightly lower peak shear strength.The wear in these replicas,which have similar morphology as the rock joint,is in the same areas as in the rock joint.The wear is slightly larger in the rock joint and therefore the discrepancy in peak shear strength derives from differences in material properties,possibly from differences in toughness.It is shown by application of the suggested method that the quality assured replicas manufactured following the process employed in this study phenomenologically capture the shear strength characteristics,which makes them useful in parameter studies.
基金supported by the National Science and Technology Major Special Project of China on Water Pollution Control and Management (Grant No. 2009ZX07528-006-01)the National Natural Science Foundation of China (Grant No. 50839001)
文摘A three-dimensional eutrophication model was applied to assist the management of Dahuofang Reservoir in China.Transport processes were obtained from the three-dimensional,finite volume hydrodynamic model.The hydrodynamic model was verified for a one-year time period in 2006.Our simulation reproduced intra-annual variation of stratification.The simulated variation of vertical thermal structures also matched observations.The water quality model included 8 state variables,including dissolved oxygen,phytoplankton as carbon,carbonaceous biochemical oxygen demand,ammonium nitrogen,nitrate and nitrite nitrogen,ortho-phosphorus,organic nitrogen,and organic phosphorus.Sensitivity of the parameters has been analyzed to decide which process would affect the water quality in the simulation.The water quality verification suggested the model successfully computed the temporal cycles and spatial distributions of key water quality components.The comparison between water quality components before and after the first phase of the water conveyance project suggests that the project has a slight effect on the reservoir ecosystem.The model could be used as a tool to guide physico-biological engineering design or management strategies for Dahuofang Reservoir.
文摘Objective To study a way to establish a drug inspection evaluation system in China.Methods Through literature research,behavioral event interviews,Delphi expert interviews,and other methods,the theory of“threedimensional quality structure model”was used to extract,screen,and construct a set of evaluation indicator system for drug inspection,including 3 first-level indicators,11 second-level indicators,and 47 third-level indicators.Results and Conclusion An effective management tool to evaluate the quality of drug inspection has not yet been formed in China.According to the requirements of laws,regulations,and departmental rules,combined with the mature drug inspection mechanism of international drug regulatory agencies or organizations and the international quality management theory,some management tools are put forward to improve the quality system of drug supervision.
文摘Objective:To study the correlation between tumor size,radiation source intensity,prescription dose,and source dwell time in afterloading treatment plan,and to establish a rapid quality control method for afterloading treatment plan.Methods:A total of 181 patients with gynecological tumor were enrolled in our hospital.A total of 84 patients were installed with three tubes of Fletcher'applicator,58 patients with single uterine tube and 39 patients with vaginal applicator.Each patient was scanned with CT before treatment,and the target area and organs were delineated by doctors.The treatment plan was optimized by IPSA.The planned source intensity,prescription dose,source residence time and tumor volume of each case were recorded and the CI,RV,and k value were calculated,The CI distribution characteristics and the relationship with RV value were analyzed.In addition,46 cases of gynecological tumor patients'afterloading plan used this method for quality control verification.Results:The CI of the three kinds of applicators was normal distribution.The average Ci of Fletcher applicator was 0.720±0.067,k=1394,r=0.894,the average CI of Fletcher applicator was 0.697±0.076,k=1428,r=0.940,the average CI of vaginal applicator was 0.742±0.067,k=1362,r=0.909.Conclusion:Using this method,we could quickly evaluate the target volume,radiation source intensity,prescription dose and treatment time,to determine the cause of deviation according to the feedback results,ensuring that the afterloading treatment plan can be implemented efficiently quickly,and accurately in accordance with the clinical requirements.
基金Supported by National Natural Science Foundation of China,No.81770621,No.81573053Ministry of Education,Culture,Sports,Science,and Technology of Japan,KAKENHI,No.16K15604,No.18H02866Natural Science Foundation of Jiangsu Province,No.BK20180281
文摘Human induced pluripotent stem cells(hiPSCs)are invaluable resources for producing high-quality differentiated cells in unlimited quantities for both basic research and clinical use.They are particularly useful for studying human disease mechanisms in vitro by making it possible to circumvent the ethical issues of human embryonic stem cell research.However,significant limitations exist when using conventional flat culturing methods especially concerning cell expansion,differentiation efficiency,stability maintenance and multicellular 3D structure establishment,differentiation prediction.Embryoid bodies(EBs),the multicellular aggregates spontaneously generated from iPSCs in the suspension system,might help to address these issues.Due to the unique microenvironment and cell communication in EB structure that a 2D culture system cannot achieve,EBs have been widely applied in hiPSC-derived differentiation and show significant advantages especially in scaling up culturing,differentiation efficiency enhancement,ex vivo simulation,and organoid establishment.EBs can potentially also be used in early prediction of iPSC differentiation capability.To improve the stability and feasibility of EB-mediated differentiation and generate high quality EBs,critical factors including iPSC pluripotency maintenance,generation of uniform morphology using micro-pattern 3D culture systems,proper cellular density inoculation,and EB size control are discussed on the basis of both published data and our own laboratory experiences.Collectively,the production of a large quantity of homogeneous EBs with high quality is important for the stability and feasibility of many PSCs related studies.
文摘The National University Corporation Tsukuba University of Technology(NTUT) is the only institute of higher education for the hearing and the visually impaired in Japan. In our university, hearing or visually impaired students are studying to be technicians after they graduate, toward social independence. From previous experience of higher education for students with disabilities, effects are increased when modeling is used by the teachers involved in professional education. In the Mechanical Engineering Course, we are using modeling, to match the drawing and shape for beginning students. It includes support for enhancing one's view, and how to draw out the ability of mechanical engineering students for the basics. For students to study Mechanical Design and Drawing, Modeling of Gear Pump, Jack and Globe Valve are easily shown through drawings and the operation of each mechanism through sample drawings in the textbook. It is possible to make an opportunity to think about the machine mechanism. It will be shown by students' works. The assembling of the model triggers the need for form accuracy by making a function, and improves the quality of learning. It is possible that a three-dimensional molding machine can be produced through experiential learning by the model, and modeling with the dimension numerical data. Moreover, it is also embodied in a three-dimensional modeling which results in the image processing programming created. Confirming the improvement of the program through the shape with the quality. In the Department of Synthetic Design, students have chances to realize and self-evaluate from the design of the lamp shade with a complicated shape. In the Faculty of Health Science from Department of Health, high quality teaching of visually-impaired students through the use of bone model teaching materials has become possible in the medical-related courses.
文摘Dalian Bay is a large coastal embayment situated in the Yellow Sea. The bay is heavily industrialised and the surrounding water they receives large amounts of industrial effluent. A numerical model of water quality in Dalian Bay has been developed to study the long-term transport and fate of pollutants in the system. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter.The waters of Dalisn Bay are stratified due to the density variations resulting from the seasonal variations in meteorological conditions. In order to simulate the vertical structure of the hydrodynamics and pollutant transport in the bay the three-dimensional segmented and layered hydrodynamic model has been utilised. The results are used to drive the water quality model which simulates full oxygen and nutrient balance, primary productivity and the transport,reaction mechanism and fate of pollutants. The model has been used to study seasonal effects.The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.