Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,m...Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,measure,and investigate affective states and subjective data.Sentiment analy-sis algorithms include emotion lexicon,traditional machine learning,and deep learning.In the text sentiment analysis algorithm based on a neural network,multi-layer Bi-directional long short-term memory(LSTM)is widely used,but the parameter amount of this model is too huge.Hence,this paper proposes a Bi-directional LSTM with a trapezoidal structure model.The design of the trapezoidal structure is derived from classic neural networks,such as LeNet-5 and AlexNet.These classic models have trapezoidal-like structures,and these structures have achieved success in the field of deep learning.There are two benefits to using the Bi-directional LSTM with a trapezoidal structure.One is that compared with the single-layer configuration,using the of the multi-layer structure can better extract the high-dimensional features of the text.Another is that using the trapezoidal structure can reduce the model’s parameters.This paper introduces the Bi-directional LSTM with a trapezoidal structure model in detail and uses Stanford sentiment treebank 2(STS-2)for experiments.It can be seen from the experimental results that the trapezoidal structure model and the normal structure model have similar performances.However,the trapezoidal structure model parameters are 35.75%less than the normal structure model.展开更多
Newspaper is, to some extent, a mirror of our society, reflecting the latest change and development of the society.News text is a linguistic representation of the world. This paper is to briefly introduce the structur...Newspaper is, to some extent, a mirror of our society, reflecting the latest change and development of the society.News text is a linguistic representation of the world. This paper is to briefly introduce the structure, writing and linguistic styles of news texts and thus to increase readers' awareness of the distinctive features of news texts.展开更多
With the remarkable growth of textual data sources in recent years,easy,fast,and accurate text processing has become a challenge with significant payoffs.Automatic text summarization is the process of compressing text...With the remarkable growth of textual data sources in recent years,easy,fast,and accurate text processing has become a challenge with significant payoffs.Automatic text summarization is the process of compressing text documents into shorter summaries for easier review of its core contents,which must be done without losing important features and information.This paper introduces a new hybrid method for extractive text summarization with feature selection based on text structure.The major advantage of the proposed summarization method over previous systems is the modeling of text structure and relationship between entities in the input text,which improves the sentence feature selection process and leads to the generation of unambiguous,concise,consistent,and coherent summaries.The paper also presents the results of the evaluation of the proposed method based on precision and recall criteria.It is shown that the method produces summaries consisting of chains of sentences with the aforementioned characteristics from the original text.展开更多
The present study probed into the effects of text structure, structure awareness and proficiency level on EFL learners' reading test performance. There are 112 college-level students participated in the experiment an...The present study probed into the effects of text structure, structure awareness and proficiency level on EFL learners' reading test performance. There are 112 college-level students participated in the experiment and their English proficiency belonged to distinct levels. The subjects' performance on the recall of two passages written in different types of structure was examined. Results of statistical indicate that text structure, structure awareness and proficiency level all have main effects on the subjects' reading performance. More specifically, two major findings emerged from the results of the investigation. One the one hand, text structures significantly affected the quantity but not the quality of the information recalled while proficiency level and structure awareness had significant impact on both the quantity and quality of information recalled. On the other hand, structure awareness was irrelevant to either text structure or proficiency level. The implications of the findings for teaching L2/FL reading were suggested.展开更多
In 1961 T. B. Jones and J. W. Snyder published 332 texts from many collections in the United States in their book Sumerian Economic Texts from the Third Ur Dynasty, a Catalogue and Discussion of Documents from Various...In 1961 T. B. Jones and J. W. Snyder published 332 texts from many collections in the United States in their book Sumerian Economic Texts from the Third Ur Dynasty, a Catalogue and Discussion of Documents from Various Collections (Minneapolis)展开更多
Auto-grading,as an instruction tool,could reduce teachers’workload,provide students with instant feedback and support highly personalized learning.Therefore,this topic attracts considerable attentions from researcher...Auto-grading,as an instruction tool,could reduce teachers’workload,provide students with instant feedback and support highly personalized learning.Therefore,this topic attracts considerable attentions from researchers recently.To realize the automatic grading of handwritten chemistry assignments,the problem of chemical notations recognition should be solved first.The recent handwritten chemical notations recognition solutions belonging to the end-to-end trainable category suffered fromthe problem of lacking the accurate alignment information between the input and output.They serve the aim of reading notations into electrical devices to better prepare relevant edocuments instead of auto-grading handwritten assignments.To tackle this limitation to enable the auto-grading of handwritten chemistry assignments at a fine-grained level.In this work,we propose a component-detectionbased approach for recognizing off-line handwritten Organic Cyclic Compound Structure Formulas(OCCSFs).Specifically,we define different components of OCCSFs as objects(including graphical objects and text objects),and adopt the deep learning detector to detect them.Then,regarding the detected text objects,we introduce an improved attention-based encoder-decoder model for text recognition.Finally,with these detection results and the geometric relationships of detected objects,this article designs a holistic algorithm for interpreting the spatial structure of handwritten OCCSFs.The proposedmethod is evaluated on a self-collected data set consisting of 3000 samples and achieves promising results.展开更多
Huangdi's Internal Classics(Neijin) is one of the most important ancient medical classics, which plays far-reaching influence in medical field. More and more domestic and overseas scholars published their translat...Huangdi's Internal Classics(Neijin) is one of the most important ancient medical classics, which plays far-reaching influence in medical field. More and more domestic and overseas scholars published their translated texts on Neijing. Due to the diversity of editions and different understanding, the translating styles and contents are widely different. This study will focus on the different translating styles on culture-specific lexicon、figure of speech and four-Chinese-character structures in Neijin.展开更多
基金supported by Yunnan Provincial Education Department Science Foundation of China under Grant construction of the seventh batch of key engineering research centers in colleges and universities(Grant Project:Yunnan College and University Edge Computing Network Engineering Research Center).
文摘Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,measure,and investigate affective states and subjective data.Sentiment analy-sis algorithms include emotion lexicon,traditional machine learning,and deep learning.In the text sentiment analysis algorithm based on a neural network,multi-layer Bi-directional long short-term memory(LSTM)is widely used,but the parameter amount of this model is too huge.Hence,this paper proposes a Bi-directional LSTM with a trapezoidal structure model.The design of the trapezoidal structure is derived from classic neural networks,such as LeNet-5 and AlexNet.These classic models have trapezoidal-like structures,and these structures have achieved success in the field of deep learning.There are two benefits to using the Bi-directional LSTM with a trapezoidal structure.One is that compared with the single-layer configuration,using the of the multi-layer structure can better extract the high-dimensional features of the text.Another is that using the trapezoidal structure can reduce the model’s parameters.This paper introduces the Bi-directional LSTM with a trapezoidal structure model in detail and uses Stanford sentiment treebank 2(STS-2)for experiments.It can be seen from the experimental results that the trapezoidal structure model and the normal structure model have similar performances.However,the trapezoidal structure model parameters are 35.75%less than the normal structure model.
文摘Newspaper is, to some extent, a mirror of our society, reflecting the latest change and development of the society.News text is a linguistic representation of the world. This paper is to briefly introduce the structure, writing and linguistic styles of news texts and thus to increase readers' awareness of the distinctive features of news texts.
文摘With the remarkable growth of textual data sources in recent years,easy,fast,and accurate text processing has become a challenge with significant payoffs.Automatic text summarization is the process of compressing text documents into shorter summaries for easier review of its core contents,which must be done without losing important features and information.This paper introduces a new hybrid method for extractive text summarization with feature selection based on text structure.The major advantage of the proposed summarization method over previous systems is the modeling of text structure and relationship between entities in the input text,which improves the sentence feature selection process and leads to the generation of unambiguous,concise,consistent,and coherent summaries.The paper also presents the results of the evaluation of the proposed method based on precision and recall criteria.It is shown that the method produces summaries consisting of chains of sentences with the aforementioned characteristics from the original text.
文摘The present study probed into the effects of text structure, structure awareness and proficiency level on EFL learners' reading test performance. There are 112 college-level students participated in the experiment and their English proficiency belonged to distinct levels. The subjects' performance on the recall of two passages written in different types of structure was examined. Results of statistical indicate that text structure, structure awareness and proficiency level all have main effects on the subjects' reading performance. More specifically, two major findings emerged from the results of the investigation. One the one hand, text structures significantly affected the quantity but not the quality of the information recalled while proficiency level and structure awareness had significant impact on both the quantity and quality of information recalled. On the other hand, structure awareness was irrelevant to either text structure or proficiency level. The implications of the findings for teaching L2/FL reading were suggested.
文摘In 1961 T. B. Jones and J. W. Snyder published 332 texts from many collections in the United States in their book Sumerian Economic Texts from the Third Ur Dynasty, a Catalogue and Discussion of Documents from Various Collections (Minneapolis)
基金supported by National Natural Science Foundation of China (Nos.62007014 and 62177024)the Humanities and Social Sciences Youth Fund of the Ministry of Education (No.20YJC880024)+1 种基金China Post Doctoral Science Foundation (No.2019M652678)the Fundamental Research Funds for the Central Universities (No.CCNU20ZT019).
文摘Auto-grading,as an instruction tool,could reduce teachers’workload,provide students with instant feedback and support highly personalized learning.Therefore,this topic attracts considerable attentions from researchers recently.To realize the automatic grading of handwritten chemistry assignments,the problem of chemical notations recognition should be solved first.The recent handwritten chemical notations recognition solutions belonging to the end-to-end trainable category suffered fromthe problem of lacking the accurate alignment information between the input and output.They serve the aim of reading notations into electrical devices to better prepare relevant edocuments instead of auto-grading handwritten assignments.To tackle this limitation to enable the auto-grading of handwritten chemistry assignments at a fine-grained level.In this work,we propose a component-detectionbased approach for recognizing off-line handwritten Organic Cyclic Compound Structure Formulas(OCCSFs).Specifically,we define different components of OCCSFs as objects(including graphical objects and text objects),and adopt the deep learning detector to detect them.Then,regarding the detected text objects,we introduce an improved attention-based encoder-decoder model for text recognition.Finally,with these detection results and the geometric relationships of detected objects,this article designs a holistic algorithm for interpreting the spatial structure of handwritten OCCSFs.The proposedmethod is evaluated on a self-collected data set consisting of 3000 samples and achieves promising results.
文摘Huangdi's Internal Classics(Neijin) is one of the most important ancient medical classics, which plays far-reaching influence in medical field. More and more domestic and overseas scholars published their translated texts on Neijing. Due to the diversity of editions and different understanding, the translating styles and contents are widely different. This study will focus on the different translating styles on culture-specific lexicon、figure of speech and four-Chinese-character structures in Neijin.