Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure....Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure. Therefore the hydrocarbon must spread and move vertically to the surface along the pressure gradient orientation. Hydrocarbons in the reservoir along some small rifts, cracks, joints and cleavages penetrate the overlying strata and seepage onto the surface. Thus the hydrocarbons become unvisble oil and gas signs. This process is called the phenomena of hydrocarbon microseepage of reservoir. Hydrocarbons microseepage in the process展开更多
The paper provides an insight into key engineering aspects of Kuwait Oil Company's existing projects, facilities and equipment both current and from nearly 30 years of projects development. It deals with engineering ...The paper provides an insight into key engineering aspects of Kuwait Oil Company's existing projects, facilities and equipment both current and from nearly 30 years of projects development. It deals with engineering features of mainly process and mechanical equipment, both static and rotating besides others, used for collection, separation, desalting, heat transfer, chemical treatment, storage, transmission, pipelines and similar facilities utilized for upstream oil and gas production, both sweet and sour. Engineering highlights include certain technological developments, metallurgical aspects, few best practices and lessons learnt as well. Seven (7) case studies are included towards the end that show case some of the engineering aspects of facility equipment, lessons learned from their engineering and conclusions drawn that, emphasize the need to focus on initial, preliminary engineering aspects of projects and could provide useful tips for oil and gas engineers and designers.展开更多
The effectiveness,viability and feasibility of applying Fenton reactants in treating soil contaminated with automatic gas oil(AGO)was investigated ex-situ.Soil was simulated to achieve 10%contamination using AGO(diese...The effectiveness,viability and feasibility of applying Fenton reactants in treating soil contaminated with automatic gas oil(AGO)was investigated ex-situ.Soil was simulated to achieve 10%contamination using AGO(diesel)as the primary contaminant.Physicochemical properties and heavy metal contents were characterized using standard analytical methods,while total petroleum hydrocarbon(TPH)content was determined by molecular spectroscopy.An investigation of the soil physicochemical properties shows severe impact of the contaminant on pH,conductivity,phosphorus and(TPH)content.The optimum concentration of Fenton reactants determined from the optimization study was found to be 350,000 ppm H2O2 and 600 ppm FeSO4 at optimum room temperature range of 27e30C and optimum pH of 4.7.The highly exothermic Fenton oxidation treatment resulted in significant decrease in TPH content by 87.6%after 6 h of periodic monitoring;breaking down the hydrocarbons into non-toxic environmental friendly products.Kinetics analysis and evaluation shows pseudo-first order mechanism for the Fenton treatment with a calculated rate constant of 0.226 h-1 and half life of 3 h 4 min.The Fenton method is found to be very effective and efficient not only for the removal of the diesel contaminant,but also for the restoration of lost physicochemical properties occasioned by the effect of the contaminant.The environmental friendliness and fast response time towards effective clean up gives the technique a cutting edge advantage over other conventional methods.It therefore presents potentials for remediation experts in outright applications on real field challenges.展开更多
文摘Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure. Therefore the hydrocarbon must spread and move vertically to the surface along the pressure gradient orientation. Hydrocarbons in the reservoir along some small rifts, cracks, joints and cleavages penetrate the overlying strata and seepage onto the surface. Thus the hydrocarbons become unvisble oil and gas signs. This process is called the phenomena of hydrocarbon microseepage of reservoir. Hydrocarbons microseepage in the process
文摘The paper provides an insight into key engineering aspects of Kuwait Oil Company's existing projects, facilities and equipment both current and from nearly 30 years of projects development. It deals with engineering features of mainly process and mechanical equipment, both static and rotating besides others, used for collection, separation, desalting, heat transfer, chemical treatment, storage, transmission, pipelines and similar facilities utilized for upstream oil and gas production, both sweet and sour. Engineering highlights include certain technological developments, metallurgical aspects, few best practices and lessons learnt as well. Seven (7) case studies are included towards the end that show case some of the engineering aspects of facility equipment, lessons learned from their engineering and conclusions drawn that, emphasize the need to focus on initial, preliminary engineering aspects of projects and could provide useful tips for oil and gas engineers and designers.
文摘The effectiveness,viability and feasibility of applying Fenton reactants in treating soil contaminated with automatic gas oil(AGO)was investigated ex-situ.Soil was simulated to achieve 10%contamination using AGO(diesel)as the primary contaminant.Physicochemical properties and heavy metal contents were characterized using standard analytical methods,while total petroleum hydrocarbon(TPH)content was determined by molecular spectroscopy.An investigation of the soil physicochemical properties shows severe impact of the contaminant on pH,conductivity,phosphorus and(TPH)content.The optimum concentration of Fenton reactants determined from the optimization study was found to be 350,000 ppm H2O2 and 600 ppm FeSO4 at optimum room temperature range of 27e30C and optimum pH of 4.7.The highly exothermic Fenton oxidation treatment resulted in significant decrease in TPH content by 87.6%after 6 h of periodic monitoring;breaking down the hydrocarbons into non-toxic environmental friendly products.Kinetics analysis and evaluation shows pseudo-first order mechanism for the Fenton treatment with a calculated rate constant of 0.226 h-1 and half life of 3 h 4 min.The Fenton method is found to be very effective and efficient not only for the removal of the diesel contaminant,but also for the restoration of lost physicochemical properties occasioned by the effect of the contaminant.The environmental friendliness and fast response time towards effective clean up gives the technique a cutting edge advantage over other conventional methods.It therefore presents potentials for remediation experts in outright applications on real field challenges.