In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ...In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.展开更多
Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lu...Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .展开更多
A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface...A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface drag coefficient, wave-induced surface mixing, SWAN, damping function of sediment on turbulence, sediment model and depth-dependent wave radiation stress to COHERENS. The COHERENS-SED is adopted to study the effects induced by wave-induced three-dimensional longshore current on suspended sediment spreading of the Huanghe River (Yellow River) mouth. Several different cases divided by setting different wave parameters of inputting boundary waves are carried out. The modeling results agree with measurement data. In terms of simulation results, it is easy to know that three-dimensional wave radiation stress plays an obvious role when inputting boundary wave height is stronger than 3 m. Moreover, wave direction also affects the sediment spreading rules of the mouth strongly too.展开更多
This paper introduces a method in which a series of parallel B-ultrasonic tumor section images is recombined into a three-dimensional picture in HIFU (High Intensity Focus Ultrasonic) therapy. The experiments show tha...This paper introduces a method in which a series of parallel B-ultrasonic tumor section images is recombined into a three-dimensional picture in HIFU (High Intensity Focus Ultrasonic) therapy. The experiments show that the recombining three-dimensional tumor is anastomose with the trim size, that the method is usable and accurate in the operation. It has a certain consulting value.展开更多
The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Ha...The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable.展开更多
Based on the physical characteristics of SiGe material,a new three-dimensional (3D) CMOS IC structure is proposed,in which the first device layer is made of Si material for nMOS devices and the second device layer i...Based on the physical characteristics of SiGe material,a new three-dimensional (3D) CMOS IC structure is proposed,in which the first device layer is made of Si material for nMOS devices and the second device layer is made of Six Ge1- x material for pMOS. The intrinsic performance of ICs with the new structure is then limited by Si nMOS.The electrical characteristics of a Si-SiGe 3D CMOS device and inverter are all simulated and analyzed by MEDICI. The simulation results indicate that the Si-SiGe 3D CMOS ICs are faster than the Si-Si 3D CMOS ICs. The delay time of the 3D Si-SiGe CMOS inverter is 2-3ps,which is shorter than that of the 3D Si-Si CMOS inverter.展开更多
Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention t...Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention therapy. Methods: Eighteen patients with central lungcancer underwent MSCT with real time helical thin-slice CT scanning. Three-dimensional bronchialartery reconstruction was done at the console work-station. The space anatomical characters ofbronchial artery were observed through different rotations. Results: For 6 cases, thethree-dimensional images of bronchial artery (33.33%) could exactly show the origins, the routes(lung inner segment and mediatism segment) and the diameters of bronchial arteries. Vision rate ofbronchial arteries was the highest in pulmonary artery stricture and truncation groups, and thevessels' diameter became larger apparently. These characters demonstrated blood supply of this kindof central lung cancer come from bronchial artery. Volume rendering images were the best ones amongthree-dimensional images. Conclusion: Three-dimensional imaging with MSCT in bronchial artery canreveal the anatomical characters of bronchial artery and provide theoretical evidence on bloodsupply and intervention therapy of central lung cancer.展开更多
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu...Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.展开更多
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ...Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.展开更多
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap...Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
AIM: To describe a three-dimensional model(3DM) to accurately reconstruct anatomic relationships of centrally located hepatocellular carcinomas(HCCs).METHODS: From March 2013 to July 2014, reconstructions and visual s...AIM: To describe a three-dimensional model(3DM) to accurately reconstruct anatomic relationships of centrally located hepatocellular carcinomas(HCCs).METHODS: From March 2013 to July 2014, reconstructions and visual simulations of centrally located HCCs were performed in 39 patients using a 3D subject-based computed tomography(CT) model with customdeveloped software. CT images were used for the 3D reconstruction of Couinaud's pedicles and hepatic veins, and the calculation of corresponding tumor territories and hepatic segments was performed using Yorktal DMIT software. The respective volume, surgical margin, and simulated virtual resection of tumors were also estimated by this model preoperatively. All patients were treated surgically and the results were retrospectively assessed. Clinical characteristics, imaging data, procedure variables, pathologic features, and postoperative data were recorded and compared to determine the reliability of the model.RESULTS: 3D reconstruction allowed stereoscopic identification of the spatial relationships between physiologic and pathologic structures, and offered quantifiable liver resection proposals based on individualized liver anatomy. The predicted values were consistent with the actual values for tumor mass volume(82.4 ± 109.1 m L vs 84.1 ± 108.9 m L, P = 0.910), surgical margin(10.1 ± 6.2 mm vs 9.1 ± 5.9 mm, P = 0.488), and maximum tumor diameter(4.61 ± 2.16 cm vs 4.53 ± 2.14 cm, P = 0.871). In addition,the number and extent of portal venous ramifications, as well as their relation to hepatic veins, were visualized. Preoperative planning based on simulated resection facilitated complete resection of large tumors located in the confluence of major vessels. And most of the predicted data were correlated with intraoperative findings.CONCLUSION: This 3DM provides quantitative morphometry of tumor masses and a stereo-relationship with adjacent structures, thus providing a promising technique for the management of centrally located HCCs.展开更多
AIM: To differentiate focal liver lesions based on enhancement patterns using three-dimensional ultrasonography (3D US) with perflubutane-based contrast agent.METHODS: Two hundred and eighty two patients with focal li...AIM: To differentiate focal liver lesions based on enhancement patterns using three-dimensional ultrasonography (3D US) with perflubutane-based contrast agent.METHODS: Two hundred and eighty two patients with focal liver lesions,including 168 hepatocellular carcinomas (HCCs),63 metastases,40 hemangiomas and 11 focal nodular hyperplasias (FNHs),were examined by 3D US with perflubutane-based contrast agent.Tomographic ultrasound images and sonographic angiograms were reconstructed.Among 282 lesions,enhancement patterns of 163 lesions between January 2007 and October 2007 were analyzed retrospectively.Then from November 2007 to May 2008,compared with contrast-enhanced (CE) 2D US,CE 3D US was performed on 119 lesions for prospective differential diagnosis.Sensitivity,specificity,area under receiver operating characteristic curve (Az) and inter-reader agreement were assessed.RESULTS: With the tridimensional view,dominant enhancement patterns were revealed as diffuse enhancement or peripheral ring-like enhancement,followed with washout change for HCCs or metastases,respectively,and peripheral nodular enhancement or diffuse enhancement with spoke-wheel arteries,followed by persistent enhancement for hemangiomas or FNHs,respectively.At CE 3D US,the prospective differentiation of lesions showed sensitivity 92% (mean for two readers),specificity 91% and Az value 0.95 for HCCs,84%,97%,and 0.95 for metastases,91%,98%,and 0.98 for hemangiomas and 80%,99%,and 0.99 for FNHs,respectively,while good to excellent inter-reader agreement was achieved.No significant difference exists between prospective diagnosis accuracy at CE 3D US and that at CE 2D US.CONCLUSION: CE 3D US provides a spatial perspective for liver tumor enhancement,and could help in differentiating focal liver lesions.展开更多
To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. T...To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (〈1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye.展开更多
Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied ...Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied to represent city's vertical and horizontal increases respectively,and statistical methods were used to analyze the driving forces of urban expansion.The research drew following conclusions:1) The urban expansion process of Shanghai from 1985 to 2006 had a clear periodic feature,and could be divided into three stages:vertical expansion in dominance,coordinated vertical and horizontal expansion,and horizontal expansion in dominance.2) The average height and quantity of buildings in core city were significantly bigger than those in suburbs,but the changing speed of the latter was faster.And 3) urbanization process was the major driving force for the city's horizontal expansion,while industrial structure improvement was the key driving factor for the vertical expansion.Those two driving forces were simultaneously affected by city's political factors.展开更多
Sometimes endometrial polyps,submucosal myomas,and endometrial cancer show similar findings under ultrasonography.The aim of this study was to assess the antidiastole value of blood flow parameters using three-dimensi...Sometimes endometrial polyps,submucosal myomas,and endometrial cancer show similar findings under ultrasonography.The aim of this study was to assess the antidiastole value of blood flow parameters using three-dimensional(3D)power Doppler ultrasonography angiography(PDA)between endometrial cancer and uterine parenchyma lumps.The data of the blood flow indices in 3D-PDA including the vascularization index(VI),flow index(FI),and vascularization flow index(VFI)in 40 patients with endometrial cancer and 41 patients with uterine parenchyma lumps(endometrial polyps and submucosal myomas)were retrospectively analysed and compared utilizing Virtual Organ Computer-aided AnaLysis(VOCAL)software.The results showed that all the blood flow parameters(VI,FI,VFI)were significantly higher in women with endometrial cancer than in those with uterine parenchyma lumps(P<0.001).The area under the curve of ROC of VI,FI,and VFI was 0.98,0.84,and 0.97,respectively.Thus,the best predictor of endometrial carcinoma was VI with a sensitivity of 97.0% and a specificity of 91.0%.The optimal cutoff value of VI was 4.06%.Our data demonstrated that all of the blood flow signal parameters(including VI,FI,and VFI)in 3D power Doppler ultrasonography had significant antidiastole values between endometrial cancer and uterine parenchyma lumps to assist clinicians in properly diagnosing patients.展开更多
In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) d...In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR.展开更多
Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rul...Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.展开更多
With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focu...With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focused on the planar area(two-dimensional(2D)) expansion. Few studies have been conducted from a 3D perspective. In this paper, the 3D urban expansion of the Yangzhou City, Jiangsu Province, China from 2003 to 2012 was evaluated based on Geographical Information System(GIS) tools and high-resolution remote sensing images. Four indices, namely weighted average height of buildings, volume of buildings, 3D expansion intensity and 3D fractal dimension are used to quantify the 3D urban expansion. The weighted average height of buildings and the volume of buildings are used to illustrate the temporal change of the 3D urban morphology, while the other two indices are used to calculate the expansion intensity and the fractal dimension of the 3D urban morphology. The results show that the spatial distribution of the high-rise buildings in Yangzhou has significantly spread and the utilization of the 3D space of Yangzhou has become more efficient and intensive. The methods proposed in this paper laid a foundation for a wide range of study of 3D urban morphology changes.展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.2022YJS094)。
文摘In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.
文摘Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .
基金The Natural Science Foundation Study on Mechanics of Non-breaking wave-induced vertical mixing on Pollutant Dispersion of Huanghe River Estuary under contract No.51179178Project from Establishment of Fine Sediment Transport Modeling System for the Yellow Sea+1 种基金which is a sub-project of Development of Operational Oceanographic systemScience & Technology Development Project of Qingdao under contract No.09-1-3-18-jch
文摘A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface drag coefficient, wave-induced surface mixing, SWAN, damping function of sediment on turbulence, sediment model and depth-dependent wave radiation stress to COHERENS. The COHERENS-SED is adopted to study the effects induced by wave-induced three-dimensional longshore current on suspended sediment spreading of the Huanghe River (Yellow River) mouth. Several different cases divided by setting different wave parameters of inputting boundary waves are carried out. The modeling results agree with measurement data. In terms of simulation results, it is easy to know that three-dimensional wave radiation stress plays an obvious role when inputting boundary wave height is stronger than 3 m. Moreover, wave direction also affects the sediment spreading rules of the mouth strongly too.
文摘This paper introduces a method in which a series of parallel B-ultrasonic tumor section images is recombined into a three-dimensional picture in HIFU (High Intensity Focus Ultrasonic) therapy. The experiments show that the recombining three-dimensional tumor is anastomose with the trim size, that the method is usable and accurate in the operation. It has a certain consulting value.
文摘The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable.
文摘Based on the physical characteristics of SiGe material,a new three-dimensional (3D) CMOS IC structure is proposed,in which the first device layer is made of Si material for nMOS devices and the second device layer is made of Six Ge1- x material for pMOS. The intrinsic performance of ICs with the new structure is then limited by Si nMOS.The electrical characteristics of a Si-SiGe 3D CMOS device and inverter are all simulated and analyzed by MEDICI. The simulation results indicate that the Si-SiGe 3D CMOS ICs are faster than the Si-Si 3D CMOS ICs. The delay time of the 3D Si-SiGe CMOS inverter is 2-3ps,which is shorter than that of the 3D Si-Si CMOS inverter.
文摘Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention therapy. Methods: Eighteen patients with central lungcancer underwent MSCT with real time helical thin-slice CT scanning. Three-dimensional bronchialartery reconstruction was done at the console work-station. The space anatomical characters ofbronchial artery were observed through different rotations. Results: For 6 cases, thethree-dimensional images of bronchial artery (33.33%) could exactly show the origins, the routes(lung inner segment and mediatism segment) and the diameters of bronchial arteries. Vision rate ofbronchial arteries was the highest in pulmonary artery stricture and truncation groups, and thevessels' diameter became larger apparently. These characters demonstrated blood supply of this kindof central lung cancer come from bronchial artery. Volume rendering images were the best ones amongthree-dimensional images. Conclusion: Three-dimensional imaging with MSCT in bronchial artery canreveal the anatomical characters of bronchial artery and provide theoretical evidence on bloodsupply and intervention therapy of central lung cancer.
基金Project supported by the National Natural Science Foundation of China (No. 12072337)。
文摘Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.
基金supported by the National Natural Science Foundation of China (No. 52275291)the Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province,China (No. 2023-CX-TD-17)
文摘Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.
基金This work was supported by grants fromthe Sichuan Science and Technology Program(2023NSFSC1877).
文摘Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
文摘AIM: To describe a three-dimensional model(3DM) to accurately reconstruct anatomic relationships of centrally located hepatocellular carcinomas(HCCs).METHODS: From March 2013 to July 2014, reconstructions and visual simulations of centrally located HCCs were performed in 39 patients using a 3D subject-based computed tomography(CT) model with customdeveloped software. CT images were used for the 3D reconstruction of Couinaud's pedicles and hepatic veins, and the calculation of corresponding tumor territories and hepatic segments was performed using Yorktal DMIT software. The respective volume, surgical margin, and simulated virtual resection of tumors were also estimated by this model preoperatively. All patients were treated surgically and the results were retrospectively assessed. Clinical characteristics, imaging data, procedure variables, pathologic features, and postoperative data were recorded and compared to determine the reliability of the model.RESULTS: 3D reconstruction allowed stereoscopic identification of the spatial relationships between physiologic and pathologic structures, and offered quantifiable liver resection proposals based on individualized liver anatomy. The predicted values were consistent with the actual values for tumor mass volume(82.4 ± 109.1 m L vs 84.1 ± 108.9 m L, P = 0.910), surgical margin(10.1 ± 6.2 mm vs 9.1 ± 5.9 mm, P = 0.488), and maximum tumor diameter(4.61 ± 2.16 cm vs 4.53 ± 2.14 cm, P = 0.871). In addition,the number and extent of portal venous ramifications, as well as their relation to hepatic veins, were visualized. Preoperative planning based on simulated resection facilitated complete resection of large tumors located in the confluence of major vessels. And most of the predicted data were correlated with intraoperative findings.CONCLUSION: This 3DM provides quantitative morphometry of tumor masses and a stereo-relationship with adjacent structures, thus providing a promising technique for the management of centrally located HCCs.
文摘AIM: To differentiate focal liver lesions based on enhancement patterns using three-dimensional ultrasonography (3D US) with perflubutane-based contrast agent.METHODS: Two hundred and eighty two patients with focal liver lesions,including 168 hepatocellular carcinomas (HCCs),63 metastases,40 hemangiomas and 11 focal nodular hyperplasias (FNHs),were examined by 3D US with perflubutane-based contrast agent.Tomographic ultrasound images and sonographic angiograms were reconstructed.Among 282 lesions,enhancement patterns of 163 lesions between January 2007 and October 2007 were analyzed retrospectively.Then from November 2007 to May 2008,compared with contrast-enhanced (CE) 2D US,CE 3D US was performed on 119 lesions for prospective differential diagnosis.Sensitivity,specificity,area under receiver operating characteristic curve (Az) and inter-reader agreement were assessed.RESULTS: With the tridimensional view,dominant enhancement patterns were revealed as diffuse enhancement or peripheral ring-like enhancement,followed with washout change for HCCs or metastases,respectively,and peripheral nodular enhancement or diffuse enhancement with spoke-wheel arteries,followed by persistent enhancement for hemangiomas or FNHs,respectively.At CE 3D US,the prospective differentiation of lesions showed sensitivity 92% (mean for two readers),specificity 91% and Az value 0.95 for HCCs,84%,97%,and 0.95 for metastases,91%,98%,and 0.98 for hemangiomas and 80%,99%,and 0.99 for FNHs,respectively,while good to excellent inter-reader agreement was achieved.No significant difference exists between prospective diagnosis accuracy at CE 3D US and that at CE 2D US.CONCLUSION: CE 3D US provides a spatial perspective for liver tumor enhancement,and could help in differentiating focal liver lesions.
基金supported by a Grant-in-Aid for Scientific Research (22659366) from the Japan Society for the Promotion of Science
文摘To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (〈1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye.
基金Under the auspices of the Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-YW-422)National Natural Science Foundation of China (No 40701059)
文摘Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied to represent city's vertical and horizontal increases respectively,and statistical methods were used to analyze the driving forces of urban expansion.The research drew following conclusions:1) The urban expansion process of Shanghai from 1985 to 2006 had a clear periodic feature,and could be divided into three stages:vertical expansion in dominance,coordinated vertical and horizontal expansion,and horizontal expansion in dominance.2) The average height and quantity of buildings in core city were significantly bigger than those in suburbs,but the changing speed of the latter was faster.And 3) urbanization process was the major driving force for the city's horizontal expansion,while industrial structure improvement was the key driving factor for the vertical expansion.Those two driving forces were simultaneously affected by city's political factors.
基金This research was supported by grants from the National Natural Science Foundation of China(No.81501530)Hubei Province Health and Family Planning Scientific Research Project(No.WJ2019M130).
文摘Sometimes endometrial polyps,submucosal myomas,and endometrial cancer show similar findings under ultrasonography.The aim of this study was to assess the antidiastole value of blood flow parameters using three-dimensional(3D)power Doppler ultrasonography angiography(PDA)between endometrial cancer and uterine parenchyma lumps.The data of the blood flow indices in 3D-PDA including the vascularization index(VI),flow index(FI),and vascularization flow index(VFI)in 40 patients with endometrial cancer and 41 patients with uterine parenchyma lumps(endometrial polyps and submucosal myomas)were retrospectively analysed and compared utilizing Virtual Organ Computer-aided AnaLysis(VOCAL)software.The results showed that all the blood flow parameters(VI,FI,VFI)were significantly higher in women with endometrial cancer than in those with uterine parenchyma lumps(P<0.001).The area under the curve of ROC of VI,FI,and VFI was 0.98,0.84,and 0.97,respectively.Thus,the best predictor of endometrial carcinoma was VI with a sensitivity of 97.0% and a specificity of 91.0%.The optimal cutoff value of VI was 4.06%.Our data demonstrated that all of the blood flow signal parameters(including VI,FI,and VFI)in 3D power Doppler ultrasonography had significant antidiastole values between endometrial cancer and uterine parenchyma lumps to assist clinicians in properly diagnosing patients.
基金The National Basic Research Program of China under contract No. 2013CB430304the National High-Tech R&D Program of China under contract No. 2013AA09A505the National Natural Science Foundation of China under contract Nos 41030854,40906015,40906016,41106005 and 41176003
文摘In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR.
文摘Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.
基金Under the auspices of Major Project of National Social Science Foundation of China(No.13&ZD13027)National Science&Technology Pillar Program During 12th Five-year Plan Period(No.2012BAJ22B03-04)National Natural Science Foundation of China(No.41401164)
文摘With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focused on the planar area(two-dimensional(2D)) expansion. Few studies have been conducted from a 3D perspective. In this paper, the 3D urban expansion of the Yangzhou City, Jiangsu Province, China from 2003 to 2012 was evaluated based on Geographical Information System(GIS) tools and high-resolution remote sensing images. Four indices, namely weighted average height of buildings, volume of buildings, 3D expansion intensity and 3D fractal dimension are used to quantify the 3D urban expansion. The weighted average height of buildings and the volume of buildings are used to illustrate the temporal change of the 3D urban morphology, while the other two indices are used to calculate the expansion intensity and the fractal dimension of the 3D urban morphology. The results show that the spatial distribution of the high-rise buildings in Yangzhou has significantly spread and the utilization of the 3D space of Yangzhou has become more efficient and intensive. The methods proposed in this paper laid a foundation for a wide range of study of 3D urban morphology changes.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.