This paper discusses the bathymetric mapping technologies by means of satellite remote sensing (RS) with special emphasis on bathymetry derivation models, methods, accuracies, advantages, limitations, and comparisons....This paper discusses the bathymetric mapping technologies by means of satellite remote sensing (RS) with special emphasis on bathymetry derivation models, methods, accuracies, advantages, limitations, and comparisons. Traditionally, bathymetry can be mapped using echo sounding sounders. However, this method is constrained by its inefficiency in shallow waters and very high operating logistic costs. In comparison, RS technologies present efficient and cost-effective means of mapping bathymetry over remote and broad areas. RS of bathymetry can be categorised into two broad classes: active RS and passive RS. Active RS methods are based on active satellite sensors, which emit artificial radiation to study the earth surface or atmospheric features, e.g. light detection and ranging (LIDAR), polarimetric synthetic aperture radar (SAR), altimeters, etc. Passive RS methods are based on passive satellite sensors, which detect sunlight (natural source of light) radiation reflected from the earth and thermal radiation in the visible and infrared portion of the electromagnetic spectrum, e.g. multispectral or optical satellite sensors. Bathymetric methods can also be categorised as imaging methods and non-imaging methods. The non-imaging method is elucidated by laser scanners or LIDAR, which measures the distance between the sensor and the water surface or the ocean floor using a single wave pulse or double waves. On the other hand, imaging methods approximate the water depth based on the pixel values or digital numbers (DN) (representing reflectance or backscatter) of an image. Imaging methods make use of the visible and/or near infrared (NIR) and microwave radiation. Imaging methods are implemented with either analytical modelling or empirical modelling, or by a blend of both. This paper presents the development of bathymetric mapping technology by using RS, and discusses the state-of-the-art bathymetry derivation methods/algorithms and their implications in practical applications.展开更多
文摘This paper discusses the bathymetric mapping technologies by means of satellite remote sensing (RS) with special emphasis on bathymetry derivation models, methods, accuracies, advantages, limitations, and comparisons. Traditionally, bathymetry can be mapped using echo sounding sounders. However, this method is constrained by its inefficiency in shallow waters and very high operating logistic costs. In comparison, RS technologies present efficient and cost-effective means of mapping bathymetry over remote and broad areas. RS of bathymetry can be categorised into two broad classes: active RS and passive RS. Active RS methods are based on active satellite sensors, which emit artificial radiation to study the earth surface or atmospheric features, e.g. light detection and ranging (LIDAR), polarimetric synthetic aperture radar (SAR), altimeters, etc. Passive RS methods are based on passive satellite sensors, which detect sunlight (natural source of light) radiation reflected from the earth and thermal radiation in the visible and infrared portion of the electromagnetic spectrum, e.g. multispectral or optical satellite sensors. Bathymetric methods can also be categorised as imaging methods and non-imaging methods. The non-imaging method is elucidated by laser scanners or LIDAR, which measures the distance between the sensor and the water surface or the ocean floor using a single wave pulse or double waves. On the other hand, imaging methods approximate the water depth based on the pixel values or digital numbers (DN) (representing reflectance or backscatter) of an image. Imaging methods make use of the visible and/or near infrared (NIR) and microwave radiation. Imaging methods are implemented with either analytical modelling or empirical modelling, or by a blend of both. This paper presents the development of bathymetric mapping technology by using RS, and discusses the state-of-the-art bathymetry derivation methods/algorithms and their implications in practical applications.