期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
基于半监督学习的StyleGAN图像生成模型
1
作者 王志强 郑爽 《计算机与现代化》 2024年第6期14-18,32,共6页
StyleGAN是一种基于生成对抗网络的图像生成方法,它在图像生成领域占据着重要的地位。但传统的StyleGAN生成图片质量依赖于训练集样本质量,当训练集图片质量较低时,StyleGAN往往不能很好发挥作用。针对此问题,本文提出一种基于半监督的S... StyleGAN是一种基于生成对抗网络的图像生成方法,它在图像生成领域占据着重要的地位。但传统的StyleGAN生成图片质量依赖于训练集样本质量,当训练集图片质量较低时,StyleGAN往往不能很好发挥作用。针对此问题,本文提出一种基于半监督的StyleGAN模型(SG-GAN)。对于单个图片的生成,首先根据StyleGAN模型中w向量和图像的一一对应关系,生成训练样本并导入支持向量机(SVM)进行训练。然后,利用SVM和StyleGAN的mapping network在每次生成图像前对w向量进行筛选,挑选合格的w向量生成图像,以提高生成图像质量。对于批量图片的生成,首先经过基因向量生成器生成基因向量并随机组合在一起,采用动态循环回溯算法求得风格向量的所有排列,根据排列结果产生交配后的个体,最后,经过评价函数进行个体的筛选,在模型的多次迭代后,最终找到更加优秀的个体。本文在公开数据集上与几种先进同类方法进行了对比实验,实验结果表明:在lsun猫脸数据集上,模型FID2.74的准确率最高可达74.2%,召回率可达51.2%。经验证,该模型在lsun数据集上的准确率明显优于StyleGAN模型,进一步证实了该模型的有效性。同时,模型在Cat Dataset,CIFAR-100和ImageNet数据集上均达到70%以上的准确率,从而验证了模型具有不错的泛化性。 展开更多
关键词 生成对抗网络 遗传算法 风格向量 支持向量机 动态循环回溯
下载PDF
基于NS-StyleGAN2的鱼类图像扩充方法
2
作者 李海涛 胡泽涛 张俊虎 《计算机与现代化》 2023年第1期13-17,23,共6页
图像多分类领域中经常出现类别不平衡问题,这会对分类模型的学习训练产生负面影响。通过对样本数量较少的类别进行扩充可以有效解决类别不平衡问题。生成对抗网络作为近年来新兴的一种神经网络,输入真实图像样本训练可以输出与真实样本... 图像多分类领域中经常出现类别不平衡问题,这会对分类模型的学习训练产生负面影响。通过对样本数量较少的类别进行扩充可以有效解决类别不平衡问题。生成对抗网络作为近年来新兴的一种神经网络,输入真实图像样本训练可以输出与真实样本非常相似的生成样本。根据此特性,本文结合第二代样式生成对抗网络(StyleGAN2)的设计思想与鱼类图像的特点,设计一种噪声抑制样式生成对抗网络NS-StyleGAN2(Noise-Suppressed Style Generative Adversarial Networks 2)。NS-StyleGN2去除了StyleGAN2合成网络中低分辨率层的噪声输入,从而抑制低分辨率层的噪声权重,使StyleGAN2生成样本细节特征更逼近真实样本特征。采用202张鲢鱼图像进行训练,本文提出的方法在起始分数、弗雷歇起始距离、内核起始距离得分等方面均优于DCGAN、WGAN、StyleGAN2,表明该方法可以有效进行图像扩充。 展开更多
关键词 样式生成对抗网络 图像扩充 噪声抑制 起始分数 弗雷歇起始距离
下载PDF
A Harmonic Approach to Handwriting Style Synthesis Using Deep Learning
3
作者 Mahatir Ahmed Tusher Saket Choudary Kongara +2 位作者 Sagar Dhanraj Pande Seong Ki Kim Salil Bharany 《Computers, Materials & Continua》 SCIE EI 2024年第6期4063-4080,共18页
The challenging task of handwriting style synthesis requires capturing the individuality and diversity of human handwriting.The majority of currently available methods use either a generative adversarial network(GAN)o... The challenging task of handwriting style synthesis requires capturing the individuality and diversity of human handwriting.The majority of currently available methods use either a generative adversarial network(GAN)or a recurrent neural network(RNN)to generate new handwriting styles.This is why these techniques frequently fall short of producing diverse and realistic text pictures,particularly for terms that are not commonly used.To resolve that,this research proposes a novel deep learning model that consists of a style encoder and a text generator to synthesize different handwriting styles.This network excels in generating conditional text by extracting style vectors from a series of style images.The model performs admirably on a range of handwriting synthesis tasks,including the production of text that is out-of-vocabulary.It works more effectively than previous approaches by displaying lower values on key Generative Adversarial Network evaluation metrics,such Geometric Score(GS)(3.21×10^(-5))and Fréchet Inception Distance(FID)(8.75),as well as text recognition metrics,like Character Error Rate(CER)and Word Error Rate(WER).A thorough component analysis revealed the steady improvement in image production quality,highlighting the importance of specific handwriting styles.Applicable fields include digital forensics,creative writing,and document security. 展开更多
关键词 Recurrent neural network generative adversarial network style encoder fréchet inception distance geometric score character error rate mixture density network word error rate
下载PDF
PP-GAN:Style Transfer from Korean Portraits to ID Photos Using Landmark Extractor with GAN 被引量:1
4
作者 Jongwook Si Sungyoung Kim 《Computers, Materials & Continua》 SCIE EI 2023年第12期3119-3138,共20页
The objective of style transfer is to maintain the content of an image while transferring the style of another image.However,conventional methods face challenges in preserving facial features,especially in Korean port... The objective of style transfer is to maintain the content of an image while transferring the style of another image.However,conventional methods face challenges in preserving facial features,especially in Korean portraits where elements like the“Gat”(a traditional Korean hat)are prevalent.This paper proposes a deep learning network designed to perform style transfer that includes the“Gat”while preserving the identity of the face.Unlike traditional style transfer techniques,the proposed method aims to preserve the texture,attire,and the“Gat”in the style image by employing image sharpening and face landmark,with the GAN.The color,texture,and intensity were extracted differently based on the characteristics of each block and layer of the pre-trained VGG-16,and only the necessary elements during training were preserved using a facial landmark mask.The head area was presented using the eyebrow area to transfer the“Gat”.Furthermore,the identity of the face was retained,and style correlation was considered based on the Gram matrix.To evaluate performance,we introduced a metric using PSNR and SSIM,with an emphasis on median values through new weightings for style transfer in Korean portraits.Additionally,we have conducted a survey that evaluated the content,style,and naturalness of the transferred results,and based on the assessment,we can confidently conclude that our method to maintain the integrity of content surpasses the previous research.Our approach,enriched by landmarks preservation and diverse loss functions,including those related to“Gat”,outperformed previous researches in facial identity preservation. 展开更多
关键词 style transfer style synthesis generative adversarial network(GAN) landmark extractor ID photos Korean portrait
下载PDF
APST-Flow: A Reversible Network-Based Artistic Painting Style Transfer Method
5
作者 Meng Wang Yixuan Shao Haipeng Liu 《Computers, Materials & Continua》 SCIE EI 2023年第6期5229-5254,共26页
In recent years,deep generative models have been successfully applied to perform artistic painting style transfer(APST).The difficulties might lie in the loss of reconstructing spatial details and the inefficiency of ... In recent years,deep generative models have been successfully applied to perform artistic painting style transfer(APST).The difficulties might lie in the loss of reconstructing spatial details and the inefficiency of model convergence caused by the irreversible en-decoder methodology of the existing models.Aiming to this,this paper proposes a Flow-based architecture with both the en-decoder sharing a reversible network configuration.The proposed APST-Flow can efficiently reduce model uncertainty via a compact analysis-synthesis methodology,thereby the generalization performance and the convergence stability are improved.For the generator,a Flow-based network using Wavelet additive coupling(WAC)layers is implemented to extract multi-scale content features.Also,a style checker is used to enhance the global style consistency by minimizing the error between the reconstructed and the input images.To enhance the generated salient details,a loss of adaptive stroke edge is applied in both the global and local model training.The experimental results show that the proposed method improves PSNR by 5%,SSIM by 6.2%,and decreases Style Error by 29.4%over the existing models on the ChipPhi set.The competitive results verify that APST-Flow achieves high-quality generation with less content deviation and enhanced generalization,thereby can be further applied to more APST scenes. 展开更多
关键词 Artistic painting style transfer reversible network generative adversarial network wavelet transform
下载PDF
多尺度语义信息无监督山水画风格迁移网络 被引量:1
6
作者 周粤川 张建勋 +2 位作者 董文鑫 高林枫 倪锦园 《计算机工程与应用》 CSCD 北大核心 2024年第4期258-269,共12页
针对图像转换类的生成对抗网络在处理无监督风格迁移任务时存在的纹理杂乱、生成图像质量差的问题,基于循环一致性损失提出了循环矫正多尺度评估生成对抗网络。首先在网络架构的设计上,基于图像的三层语义信息提出了多尺度评估网络架构... 针对图像转换类的生成对抗网络在处理无监督风格迁移任务时存在的纹理杂乱、生成图像质量差的问题,基于循环一致性损失提出了循环矫正多尺度评估生成对抗网络。首先在网络架构的设计上,基于图像的三层语义信息提出了多尺度评估网络架构,以此强化源域到目标域的迁移效果;其次在损失函数的改进上,提出了多尺度对抗损失以及循环矫正损失,用于以更严苛的目标引导模型的迭代优化方向,生成视觉质量更好的图片;最后为了预防模式崩溃的问题,在风格特征的编码阶段添加了注意力机制以提取重要的特征信息,在网络的各阶段引入ACON激活函数以加强网络的非线性表达能力,避免神经元坏死。实验结果表明,相比于CycleGAN、ACL-GAN,所提出方法在山水画风格迁移数据集上的FID值分别降低了21.80%和34.33%;为了验证模型的泛化能力,在Vangogh2Photo和Monet2Photo两个公开数据集上进行了泛化实验对比,FID值相比于两个对照网络分别降低了7.58%、18.14%和4.65%、6.99%。 展开更多
关键词 无监督风格迁移 生成对抗网络(GAN) 多尺度评估 CycleGAN
下载PDF
基于Trans-nightSeg的夜间道路场景语义分割方法
7
作者 李灿林 张文娇 +2 位作者 邵志文 马利庄 王新玥 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第2期294-303,共10页
针对夜间道路场景图像亮度低及缺乏带标注的夜间道路场景语义分割数据集的问题,提出夜间道路场景语义分割方法 Trans-nightSeg.使用TransCartoonGAN,将带标注的白天道路场景语义分割数据集Cityscapes转换为低光条件下的道路场景图像,两... 针对夜间道路场景图像亮度低及缺乏带标注的夜间道路场景语义分割数据集的问题,提出夜间道路场景语义分割方法 Trans-nightSeg.使用TransCartoonGAN,将带标注的白天道路场景语义分割数据集Cityscapes转换为低光条件下的道路场景图像,两者共用同一个语义分割标注,丰富夜间道路场景数据集.将该结果和真实的道路场景数据集一并作为N-Refinenet的输入,N-Refinenet网络引入了低光图像自适应增强网络,提高夜间道路场景的语义分割性能.该网络采用深度可分离卷积替代普通的卷积,降低了计算量.实验结果表明,所提算法在Dark Zurich-test和Nighttime Driving-test数据集上的平均交并比(m IoU)分别达到56.0%和56.6%,优于其他的夜间道路场景语义分割算法. 展开更多
关键词 图像增强 语义分割 生成对抗网络(GAN) 风格转换 道路场景
下载PDF
基于生成对抗网络的车牌图像篡改检测数据增广
8
作者 李来源 霍聪聪 谭舜泉 《计算机应用》 CSCD 北大核心 2024年第S01期301-308,共8页
现有的篡改检测方法,主要使用基于数据驱动的深度学习模型,检测效果与训练数据的质量和数量成正比,且人工制作高质量的篡改图片费时费力。针对高质量车牌篡改图片数据量少的情况,提出一种针对车牌场景的篡改图片数据增广方法。结合车牌... 现有的篡改检测方法,主要使用基于数据驱动的深度学习模型,检测效果与训练数据的质量和数量成正比,且人工制作高质量的篡改图片费时费力。针对高质量车牌篡改图片数据量少的情况,提出一种针对车牌场景的篡改图片数据增广方法。结合车牌定位模块、车牌矫正模块、基于生成对抗网络(GAN)的图像擦除模块和文字风格迁移模块,构建一个车牌字符篡改系统,以模拟真实场景的车牌篡改流程。相较于传统篡改方法,借助GAN生成的篡改字符种类更多元化、更具备多样性。实验结果表明,使用所提系统生成的车牌篡改图片可以达到篡改区域语义高度合理,且肉眼不可分辨的视觉效果;将它作为扩充数据训练篡改检测模型,曲线下面积(AUC)提升了42.9%,F1值提升了33.0%,漏检率下降了16.6%。同时,使用所提系统生成的车牌篡改图片搭配多种数据处理方法在不同篡改检测网络上均能有效提升检测性能;使用扩充数据训练后,篡改检测网络不仅可以成功检测传统篡改方法的篡改痕迹,针对现阶段流行的生成式篡改,检测效果也明显提升。 展开更多
关键词 生成对抗网络 图像擦除 文本风格迁移 篡改检测定位 数据增广
下载PDF
基于改进pix2pix框架的人脸图像修复模型
9
作者 何怡 赵德 +2 位作者 任泽民 秦浩云 蒋鹏飞 《激光杂志》 CAS 北大核心 2024年第10期94-100,共7页
人脸图像修复任务可以通过图像到图像的转换问题来实现。本文在经典的图像转换模型pix2pix的基础上提出了一种改进的人脸图像修复模型。该模型以pix2pix框架作为基础,首先通过引入感知损失、风格损失来增强生成器对图像细节和全局一致... 人脸图像修复任务可以通过图像到图像的转换问题来实现。本文在经典的图像转换模型pix2pix的基础上提出了一种改进的人脸图像修复模型。该模型以pix2pix框架作为基础,首先通过引入感知损失、风格损失来增强生成器对图像细节和全局一致性的处理能力;其次在模型的网络实现过程中融合残差块来缓解梯度爆炸,增加模型的稳定性。本文的实验结果表明,改进后的pix2pix模型取得了较好的视觉效果,在客观评价指标PSNR和SSIM上得到了显著的提升。这些结果展示了所提模型的有效性,为人脸图像修复任务提供了一种解决方案。 展开更多
关键词 人脸图像修复 图像转换 感知损失 风格损失 生成对抗网络
下载PDF
基于生成对抗网络的时尚内容和风格迁移
10
作者 丁文华 杜军威 +1 位作者 侯磊 刘金环 《计算机工程与应用》 CSCD 北大核心 2024年第9期261-271,共11页
生成对抗网络常常被用于图像着色、语义合成、风格迁移等图像转换任务,但现阶段图像生成模型的训练往往依赖于大量配对的数据集,且只能实现两个图像域之间的转换。针对以上问题,提出了一种基于生成对抗网络的时尚内容和风格迁移模型(con... 生成对抗网络常常被用于图像着色、语义合成、风格迁移等图像转换任务,但现阶段图像生成模型的训练往往依赖于大量配对的数据集,且只能实现两个图像域之间的转换。针对以上问题,提出了一种基于生成对抗网络的时尚内容和风格迁移模型(content and style transfer based on generative adversarial network,CS-GAN)。该模型利用对比学习框架最大化时尚单品与生成图像之间的互信息,可保证在时尚单品结构不变的前提下实现内容迁移;通过层一致性动态卷积方法,针对不同风格图像自适应地学习风格特征,实现时尚单品任意风格迁移,对输入的时尚单品进行内容特征(如颜色、纹理)和风格特征(如莫奈风、立体派)的融合,实现多个图像域的转换。在公开的时尚数据集上进行对比实验和结果分析,该方法与其他主流方法相比,在图像合成质量、Inception score和FID距离评价指标上均有所提升。 展开更多
关键词 生成对抗网络 内容和风格迁移 特征融合 多域转换 层一致性动态卷积
下载PDF
基于改进生成对抗网络的图像风格迁移算法
11
作者 王圣雄 刘瑞安 燕达 《电子科技》 2024年第6期36-43,共8页
图像风格迁移是图像处理领域的研究热点,但目前风格迁移模型存在生成图像细节模糊、风格纹理的色彩效果较差以及模型参数过多等问题。文中提出了一种基于改进循环一致性生成对抗网络的图像风格迁移方法,通过加入Ghost卷积模块和反残差... 图像风格迁移是图像处理领域的研究热点,但目前风格迁移模型存在生成图像细节模糊、风格纹理的色彩效果较差以及模型参数过多等问题。文中提出了一种基于改进循环一致性生成对抗网络的图像风格迁移方法,通过加入Ghost卷积模块和反残差改进模块来优化生成器网络结构,以此降低模型参数量和计算成本。同时能增强网络的特征提取能力,在损失函数中加入内容风格损失项、颜色重建损失项和映射一致性损失项来改善模型的生成能力,提升生成图像质量。实验结果表明,所提改进方法具有较强的风格迁移能力,有效增强了生成图像的内容细节和风格纹理的色彩效果,显著提升了图像质量,模型性能也得到了改善。 展开更多
关键词 图像处理 图像风格迁移 生成对抗网络 CycleGAN Ghost卷积 反残差模块 特征提取 颜色重建损失
下载PDF
基于S-LSSF的小样本滚动轴承故障诊断研究
12
作者 邓功也 宁少慧 +2 位作者 杜越 张少鹏 段攀龙 《起重运输机械》 2024年第11期28-34,共7页
文中针对滚动轴承故障诊断中滚动轴承故障样本不足的问题,提出基于S-LSSF的滚动轴承故障诊断模型,将Sty-leGan2-ada运用在轴承故障诊断领域。首先利用连续小波变换将时域振动信号转化为时频图像输入StyleGan2-ada生成对应的样本,然后将... 文中针对滚动轴承故障诊断中滚动轴承故障样本不足的问题,提出基于S-LSSF的滚动轴承故障诊断模型,将Sty-leGan2-ada运用在轴承故障诊断领域。首先利用连续小波变换将时域振动信号转化为时频图像输入StyleGan2-ada生成对应的样本,然后将原始样本和生成样本合并输入改进的ShuffleNetV2模型。在反向传播过程中引入LabelSoomthloss损失函数,降低错误标签对模型诊断性能的影响,进一步抑制过拟合在下采样单元引入LeakyReLU函数解决梯度消失的问题。实验结果表明:S-LSSF模型与原模型相比诊断准确率提高了1.9%,并且平均用时缩短了5 s。与原始样本相比,使用生成样本训练模型后其准确率、精确率、召回率和F1分数分别提高了3.58%、5.71%、6.15%和6.06%,验证了S-LSSF模型在小样本条件下轴承故障诊断的可行性和泛化性。 展开更多
关键词 滚动轴承 样式生成对抗网络 连续小波变换 小样本故障诊断
下载PDF
基于改进生成对抗网络的图像风格迁移方法研究
13
作者 司周永 王军号 《阜阳师范大学学报(自然科学版)》 2024年第2期30-37,共8页
为了解决传统GAN(Generative Adversarial Network)进行图像风格迁移受到成对数据集的限制,以及CycleGAN学习高级特征时表现不佳和训练过慢的问题,本文采用ModileNetV2-CycleGAN模型进行图像风格迁移,并引入多尺度结构相似性指数(multi-... 为了解决传统GAN(Generative Adversarial Network)进行图像风格迁移受到成对数据集的限制,以及CycleGAN学习高级特征时表现不佳和训练过慢的问题,本文采用ModileNetV2-CycleGAN模型进行图像风格迁移,并引入多尺度结构相似性指数(multi-scale structural similarity,MS-SSIM)作为惩罚项保留风格图片的特征,来提高特征学习的效果,从而提高风格化图片质量。采用客观结构相似性SSIM与峰值信噪比PSNR和主观投票作为评估指标,对迁移后的效果进行评估,实验结果表明了本文改进算法的有效性。 展开更多
关键词 图像风格迁移 循环一致性生成对抗网络 轻量级卷积神经网络 深度残差网络 多尺度结构相似性指数
下载PDF
融合超分辨率重构的图像任意风格迁移
14
作者 谭润 田启川 +1 位作者 廉露 张晓行 《计算机工程与应用》 CSCD 北大核心 2024年第15期170-179,共10页
图像风格迁移是指将一张普通照片转化为具有其他艺术风格效果的图像。针对风格迁移算法中无法重构生成图像的分辨率而造成生成图像清晰度低、纹理细节表现不丰富的问题,提出一种融合超分辨率重构的图像任意风格迁移模型。模型中加入的... 图像风格迁移是指将一张普通照片转化为具有其他艺术风格效果的图像。针对风格迁移算法中无法重构生成图像的分辨率而造成生成图像清晰度低、纹理细节表现不丰富的问题,提出一种融合超分辨率重构的图像任意风格迁移模型。模型中加入的多支路特征处理模块通过计算特征的自相似性以增强特征的表达,提出新的特征融合模块以提升特征融合效果,提出特征解码模块来实现图像的超分辨率重构,并在其中多次进行特征融合以提升风格化图像的质量;在损失函数中加入生成对抗损失和白化处理来进一步提升风格化效果。实验表明,模型具有较好的任意风格迁移效果,分辨率重构后的风格化图像的细节丰富、纹理清晰。 展开更多
关键词 任意风格迁移 超分辨率重构 生成对抗网络 自注意力机制
下载PDF
基于改进条件生成对抗网络的字体风格迁移算法
15
作者 赵明 王存睿 战国栋 《大连民族大学学报》 CAS 2024年第1期57-61,共5页
为解决现有字体迁移风格网络难以快速收敛以及处理复杂字体结构能力较弱等问题,提出了一种基于条件生成对抗网络的汉字字体生成方法。通过条件生成对抗网络的方式训练生成器作为字体风格迁移网络,通过知识蒸馏技术将预训练的图像重建网... 为解决现有字体迁移风格网络难以快速收敛以及处理复杂字体结构能力较弱等问题,提出了一种基于条件生成对抗网络的汉字字体生成方法。通过条件生成对抗网络的方式训练生成器作为字体风格迁移网络,通过知识蒸馏技术将预训练的图像重建网络的特征信息引入网络,更好地将特征解码为目标风格字体,同时结合边缘平滑损失和感知损失提高目标字体的生成质量。与已有的字体生成算法进行定量分析与定性分析,在不同字体上进行的实验结果表明:该方法生成的目标字体更加真实并且文字的边缘更加清晰。 展开更多
关键词 字体风格迁移 知识蒸馏 条件生成对抗网络
下载PDF
基于自注意机制的乳源瑶绣自动生成与应用研究
16
作者 刘宗明 洪唯 +2 位作者 龙睿 祝越 张小宇 《图学学报》 CSCD 北大核心 2024年第5期1096-1105,共10页
针对当前风格迁移模型在处理乳源瑶绣图像时存在的局限性,尤其是难以有效处理抽象几何形变和生成图像中噪点较多的问题,提出了一种SA-CycleGAN的乳源瑶绣风格迁移模型。通过融入自注意力机制,同时将生成对抗损失的目标函数替换为WGAN,... 针对当前风格迁移模型在处理乳源瑶绣图像时存在的局限性,尤其是难以有效处理抽象几何形变和生成图像中噪点较多的问题,提出了一种SA-CycleGAN的乳源瑶绣风格迁移模型。通过融入自注意力机制,同时将生成对抗损失的目标函数替换为WGAN,显著增强模型对乳源瑶绣风格特征的捕捉能力,从而优化了风格映射的质量。在应用中,该模型不仅为乳源瑶绣图案的自动生成和在线设计系统提供了坚实的技术支撑,也推动了相应数据库和数字共享平台的构建。通过严谨的对比实验,验证了优化后的SA-CycleGAN模型生成的乳源瑶绣纹样因子在评价指标上表现优异,其FID值相较原始CycleGAN模型降低了16.1%,而IS值相对提高了13.2%,图像质量得到显著提升,且视觉上更为贴近原始的乳源瑶绣风格。乳源瑶绣图案设计系统的建立大幅提升了设计效率,为民族纹样的传承与创新注入了新的活力与价值。 展开更多
关键词 自注意力机制 风格迁移 乳源瑶绣 纹样 生成对抗网络 交互设计
下载PDF
基于StarGAN-VC的语音风格转换技术
17
作者 申少鹏 胡松涛 《电声技术》 2024年第1期35-37,共3页
文章基于星型生成式对抗网络-语音转换(Star Generative Adversarial Networks-Voice Conversion,StarGAN-VC)模型,研究了一种先进的语音风格转换技术,旨在实现对语音信号的高效转换。首先,详细阐述了基于StarGAN-VC的语音转换方法的基... 文章基于星型生成式对抗网络-语音转换(Star Generative Adversarial Networks-Voice Conversion,StarGAN-VC)模型,研究了一种先进的语音风格转换技术,旨在实现对语音信号的高效转换。首先,详细阐述了基于StarGAN-VC的语音转换方法的基本原理。其次,深入研究特征提取和基频转换方法,以及StarGAN-VC模型的数学原理。最后,通过在VCC2018数据集上的实验,验证了该方法的性能。实验结果表明,该方法在频谱包络相似度和基频准确度等指标上均取得了令人满意的效果。 展开更多
关键词 深度学习 语言风格转换 星型生成式对抗网络-语音转换(StarGAN-VC)模型 频谱分析
下载PDF
融合轻量级ViT和GAN的艺术风格迁移方法
18
作者 庾晨龙 邵叱风 《兰州工业学院学报》 2024年第3期90-94,共5页
针对Vision Transformer(ViT)艺术风格迁移方法存在的局部信息提取能力不足、迁移效率低和风格化结果中出现伪影的问题,提出一种轻量级ViT和对抗生成网络(GAN)相结合的方法LVGAST。该方法利用局部和全局信息的互补提高网络的推理速度与... 针对Vision Transformer(ViT)艺术风格迁移方法存在的局部信息提取能力不足、迁移效率低和风格化结果中出现伪影的问题,提出一种轻量级ViT和对抗生成网络(GAN)相结合的方法LVGAST。该方法利用局部和全局信息的互补提高网络的推理速度与风格化质量,并通过对抗训练增强风格化结果的艺术真实感,并与6种最先进的艺术风格迁移方法进行定性和定量比较。结果表明:在定性方面,LVGAST的视觉效果更具艺术真实感;在定量方面,LVGAST分别在SSIM、Style loss上达到了0.499、1.452,且推理速度在ViT类方法中达到最快(0.215 s/张)。LVGAST结合了卷积神经网络和ViT网络的优点,提高了风格化效率,同时引入了判别网络,使风格化结果更加真实。 展开更多
关键词 Vision Transformer 艺术风格迁移 对抗生成网络 艺术真实感
下载PDF
基于Style-CycleGAN-VC的非平行语料下的语音转换 被引量:3
19
作者 高俊峰 陈俊国 《计算机应用与软件》 北大核心 2021年第9期133-139,159,共8页
非平行语料下的语音转换(Voice Conversion,VC)是指在非平行语音数据集的情况下改变源语音特征到目标语音特征的映射技术。由于非平行数据的缺陷,所以当前研究多集中于平行语料下的语音转换,而有关非平行语料的研究提出的模型架构存在... 非平行语料下的语音转换(Voice Conversion,VC)是指在非平行语音数据集的情况下改变源语音特征到目标语音特征的映射技术。由于非平行数据的缺陷,所以当前研究多集中于平行语料下的语音转换,而有关非平行语料的研究提出的模型架构存在局限性,在特定说话人下进行训练得到的模型无法适用于任意说话人下的语音转换,且转化效果有待提高。对此,借鉴两种生成式对抗网络(Generative Adversarial Network,GAN)的变体StyleGAN和CycleGAN的结构特点,对生成器网络的层重新设计,添加辅助特征提取神经网络,提出一种称为Style-CycleGAN-VC的新模型,实现了非平行语料下任意说话人之间的任意语音转换。实验表明,与CycleGAN-VC模型相比,该模型对训练的特定说话人的语音转换效果有所提高,对任意说话人的语音转换效果与其相近。 展开更多
关键词 语音转换 非平行语料 生成式对抗网络 style-CycleGAN-VC 语音合成
下载PDF
Image-to-Image Style Transfer Based on the Ghost Module
20
作者 Yan Jiang Xinrui Jia +3 位作者 Liguo Zhang Ye Yuan Lei Chen Guisheng Yin 《Computers, Materials & Continua》 SCIE EI 2021年第9期4051-4067,共17页
The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target... The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target image domain using a deep neural network.However,the existing methods typically have a large computational cost.To achieve efficient style transfer,we introduce a novel Ghost module into the GANILLA architecture to produce more feature maps from cheap operations.Then we utilize an attention mechanism to transform images with various styles.We optimize the original generative adversarial network(GAN)by using more efficient calculation methods for image-to-illustration translation.The experimental results show that our proposed method is similar to human vision and still maintains the quality of the image.Moreover,our proposed method overcomes the high computational cost and high computational resource consumption for style transfer.By comparing the results of subjective and objective evaluation indicators,our proposed method has shown superior performance over existing methods. 展开更多
关键词 style transfer generative adversarial networks ghost module attention mechanism human visual habits
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部