The impact of CO2 sequestration on the host formation is an issue occurring over geologic time. Laboratory tests can provide important results to investigate this matter but have limitations due to a relatively short ...The impact of CO2 sequestration on the host formation is an issue occurring over geologic time. Laboratory tests can provide important results to investigate this matter but have limitations due to a relatively short timeline. Based on literature review and core sample observation, naturally occurred geological phenomena, stylolites are studied in this paper for understanding CO2 sequestration in deep carbonate formations. Stylolites are distinctive and pervasive structures in carbonates that are related to water-assisted pressure solution. Pressure solution involving stylolitization is thought to be the main mechanism of compaction and cementation for many carbonates. In parallel, CO2 sequestration in carbonate formation involves extensive chemical reactions among water, CO2 and rock matrix, favoring chemical compaction as a consequence. An analogue between stylolites and CO2 sequestration induced formation heterogeneity exists in the sense of chemical compaction, as both pressure solution in stylolites and CO2 enriched solution in CO2 sequestration in carbonate formations may all introduce abnormal porous regions. The shear and/or tension fractures associated with stylolites zones may develop vertically or sub-vertically; all these give us alert for long-term safety of CO2 sequestration. Thus a study of stylolites will help to understand the CO2 sequestration in deep carbonate formation in the long run.展开更多
Characteristics of organic matter content, hydrocarbon generation and expulsion of carbonate rocks are discussed by analysis of organic carbon and pyrolysis. There is a strong inhomogeneity in distribution of organic ...Characteristics of organic matter content, hydrocarbon generation and expulsion of carbonate rocks are discussed by analysis of organic carbon and pyrolysis. There is a strong inhomogeneity in distribution of organic matter in carbonate rocks. The organic matter abundance is higher in stylolites, carbonate varves or marls, while it is the lowest in matrixes (purer carbonate rocks around stylolites). Because of stable thickness and broad area, marls and carbonate varves may become good source rocks. At the same depth, stylolites, carbonate varves and matrixes generate and expel hydrocarbons almost at the same time. Expulsion efficiency of carbonate varve is the highest; that of rnatrixes is the lowest and that of stylolites is between marl’s or carbonate varve’s and matrix’s.展开更多
基金funded by US Department of Energy through contracts of DE-FC26- 05NT42592 (CO2 sequestration) and DE-FC26- 08NT0005643 (Bakken Geomechanics)by North Dakota Industry Commission together with five industrial sponsors (Denbury Resources Inc., Hess Corporation, Marathon Oil Company, St. Mary Land & Exploration Company, and Whiting Petroleum Corporation) under contract NDIC-G015-031by North Dakota Department of Commerce through UND’s Petroleum Research, Education and Entrepreneurship Center of Excellence (PREEC)
文摘The impact of CO2 sequestration on the host formation is an issue occurring over geologic time. Laboratory tests can provide important results to investigate this matter but have limitations due to a relatively short timeline. Based on literature review and core sample observation, naturally occurred geological phenomena, stylolites are studied in this paper for understanding CO2 sequestration in deep carbonate formations. Stylolites are distinctive and pervasive structures in carbonates that are related to water-assisted pressure solution. Pressure solution involving stylolitization is thought to be the main mechanism of compaction and cementation for many carbonates. In parallel, CO2 sequestration in carbonate formation involves extensive chemical reactions among water, CO2 and rock matrix, favoring chemical compaction as a consequence. An analogue between stylolites and CO2 sequestration induced formation heterogeneity exists in the sense of chemical compaction, as both pressure solution in stylolites and CO2 enriched solution in CO2 sequestration in carbonate formations may all introduce abnormal porous regions. The shear and/or tension fractures associated with stylolites zones may develop vertically or sub-vertically; all these give us alert for long-term safety of CO2 sequestration. Thus a study of stylolites will help to understand the CO2 sequestration in deep carbonate formation in the long run.
基金Project supported by the Science and Technology Research of the 9th Five-Year Plan from China National Petroleum & Gas Company.
文摘Characteristics of organic matter content, hydrocarbon generation and expulsion of carbonate rocks are discussed by analysis of organic carbon and pyrolysis. There is a strong inhomogeneity in distribution of organic matter in carbonate rocks. The organic matter abundance is higher in stylolites, carbonate varves or marls, while it is the lowest in matrixes (purer carbonate rocks around stylolites). Because of stable thickness and broad area, marls and carbonate varves may become good source rocks. At the same depth, stylolites, carbonate varves and matrixes generate and expel hydrocarbons almost at the same time. Expulsion efficiency of carbonate varve is the highest; that of rnatrixes is the lowest and that of stylolites is between marl’s or carbonate varve’s and matrix’s.