The evolution and breaking of a propagating internal wave are directly numerically simulated using a pseudo-spectral method. The mechanism of PSI ( parametric subharmonic instability) involved in the evolution is te...The evolution and breaking of a propagating internal wave are directly numerically simulated using a pseudo-spectral method. The mechanism of PSI ( parametric subharmonic instability) involved in the evolution is testified clearly. It dominates gradually in nonlinear resonant interactions. As a consequence, the energy cascades to a second plant wave packet which has lower frequencies and higher wavenumbers than that of the primary wave. With the growth of this wave packet, wave breaking occurs and causes strongly nonlinear regime, i.e. stratified turbulence. The strong mixing and intermittent of the turbulence can be learned from the evolution of the total energy and kurtosis of vorticity vs. time. Some statistic properties of the stratified turbulence are also analyzed, including the spectra of KE (kinetic energy) and PE (potential energy). The results show that the PE spectra display a wavenumber range scaling as 0. 2 N^4ky^-3 (N is the Brunt - Vaisala frequency, k, is the vertical wavenumber), which is called buoyancy sub-range. However, the KE spectra cannot satisfy the negative cubic law of vertical wavenumber, which have a much larger downtrend than that of the PE spectra, for the potential energy is transferred more efficiently toward small scales than the kinetic energy. The Cox number of diapycnal diffusivity is also calculated, and it shows a good consistency with the observations and deductions in the ocean interior, during the stage of the stratified turbulence maintaining a fairly active level.展开更多
This paper is concerned with novel power law of turbulent energy spectrum and the relevant experiment in tidal current. The power law in the inertial sub-range has been proposed in such a way that the power of the one...This paper is concerned with novel power law of turbulent energy spectrum and the relevant experiment in tidal current. The power law in the inertial sub-range has been proposed in such a way that the power of the one-dimensional turbulent energy spectrum varies from 0 to -2 approximately, but it is accompanying the small oscillation with increasing the wave number. The well-known Kolmogorov -5/3 power law is merely one facet, to appear within the present proposed novel power law. The turbulent energy spectra (Su, Sv, Sw) in x-, y-and z-directions, respectively oscillate with the wave number. It is found that the turbulent in the tidal currents is three dimensional, and the intermittence of momentum transport is a predominant and characteristic feature in tidal current.展开更多
基金The National Nature Science Foundation of China under contract No.40706002the National High Technology Development Project of China under contract No.2007AA09Z122.
文摘The evolution and breaking of a propagating internal wave are directly numerically simulated using a pseudo-spectral method. The mechanism of PSI ( parametric subharmonic instability) involved in the evolution is testified clearly. It dominates gradually in nonlinear resonant interactions. As a consequence, the energy cascades to a second plant wave packet which has lower frequencies and higher wavenumbers than that of the primary wave. With the growth of this wave packet, wave breaking occurs and causes strongly nonlinear regime, i.e. stratified turbulence. The strong mixing and intermittent of the turbulence can be learned from the evolution of the total energy and kurtosis of vorticity vs. time. Some statistic properties of the stratified turbulence are also analyzed, including the spectra of KE (kinetic energy) and PE (potential energy). The results show that the PE spectra display a wavenumber range scaling as 0. 2 N^4ky^-3 (N is the Brunt - Vaisala frequency, k, is the vertical wavenumber), which is called buoyancy sub-range. However, the KE spectra cannot satisfy the negative cubic law of vertical wavenumber, which have a much larger downtrend than that of the PE spectra, for the potential energy is transferred more efficiently toward small scales than the kinetic energy. The Cox number of diapycnal diffusivity is also calculated, and it shows a good consistency with the observations and deductions in the ocean interior, during the stage of the stratified turbulence maintaining a fairly active level.
文摘This paper is concerned with novel power law of turbulent energy spectrum and the relevant experiment in tidal current. The power law in the inertial sub-range has been proposed in such a way that the power of the one-dimensional turbulent energy spectrum varies from 0 to -2 approximately, but it is accompanying the small oscillation with increasing the wave number. The well-known Kolmogorov -5/3 power law is merely one facet, to appear within the present proposed novel power law. The turbulent energy spectra (Su, Sv, Sw) in x-, y-and z-directions, respectively oscillate with the wave number. It is found that the turbulent in the tidal currents is three dimensional, and the intermittence of momentum transport is a predominant and characteristic feature in tidal current.