期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group
1
作者 Huimin Cheng Feng Zhou 《Advances in Pure Mathematics》 2024年第9期744-758,共15页
In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Be... In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group. 展开更多
关键词 Heisenberg Group sub-elliptic Equations REGULARITY Besov Spaces
下载PDF
Anisotropic estimates for sub-elliptic operators
2
作者 John BLAND Tom DUCHAMP 《Science China Mathematics》 SCIE 2008年第4期509-522,共14页
In the 1970’s, Folland and Stein studied a family of subelliptic scalar operators $ \mathcal{L}_\lambda $ which arise naturally in the $ \bar \partial _b $ -complex. They introduced weighted Sobolev spaces as the nat... In the 1970’s, Folland and Stein studied a family of subelliptic scalar operators $ \mathcal{L}_\lambda $ which arise naturally in the $ \bar \partial _b $ -complex. They introduced weighted Sobolev spaces as the natural spaces for this complex, and then obtained sharp estimates for $ \bar \partial _b $ in these spaces using integral kernels and approximate inverses. In the 1990’s, Rumin introduced a differential complex for compact contact manifolds, showed that the Folland-Stein operators are central to the analysis for the corresponding Laplace operator, and derived the necessary estimates for the Laplacian from the Folland Stein analysis. In this paper, we give a self-contained derivation of sharp estimates in the anisotropic Folland-Stein spaces for the operators studied by Rumin using integration by parts and a modified approach to bootstrapping. 展开更多
关键词 sub-elliptic operators anisotropic estimates anisotropic Sobolev spaces Rumin complex contact manifolds 35H20 35B45 53D10 32V20
原文传递
LOWER BOUNDS OF DIRICHLET EIGENVALUES FOR A CLASS OF FINITELY DEGENERATE GRUSHIN TYPE ELLIPTIC OPERATORS 被引量:2
3
作者 陈化 陈洪葛 +1 位作者 段忆芮 胡鑫 《Acta Mathematica Scientia》 SCIE CSCD 2017年第6期1653-1664,共12页
Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmande... Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmander's condition, then the vectorfield is finitely degenerate and the sum of square operator △X =m∑j=1 X2 j is a finitely de-generate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △x on Ω. 展开更多
关键词 Dirichlet eigenvalues finitely degenerate elliptic operators HSrmander's con-dition sub-elliptic estimate Grushin type operator
下载PDF
Dirichlet Problems for the Quasilinear Second Order Subelliptic Equations 被引量:1
4
作者 Xu Chaojiang Department of Mathematics Wuhan University Wuhan, 430072 China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1996年第1期18-32,共15页
In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(X~*(A(x,u)Xu)+sum from j=1 to m(B(x,u)Xu+C(x,u)=0 in Ω, u=φ on Ω,where X={X, …, ... In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(X~*(A(x,u)Xu)+sum from j=1 to m(B(x,u)Xu+C(x,u)=0 in Ω, u=φ on Ω,where X={X, …, X} is a system of real smooth vector fields which satisfies the Hrmander’scondition, A(i,j), B, C∈C~∞(■×R) and (A(x, z)) is a positive definite matris. We have provedthe existence and the maximal regularity of solutions in the "non-isotropic" Hlder space associatedwith the system of vector fields X. 展开更多
关键词 sub-elliptic equation Dirichlet problem A priori estimate
原文传递
Lower Bounds of Dirichlet Eigenvalues for General Grushin Type Bi-Subelliptic Operators
5
作者 Hua Chen Hongge Chen +1 位作者 Junfang Wang Nana Zhang 《Analysis in Theory and Applications》 CSCD 2019年第1期66-84,共19页
Let Q be a bounded open domain in R^n with smooth boundaryаΩ.Let X=(X1,X2…,Xm)be a system of general Grushin type vector fields defined onΩand the boundaryаΩis non-characteristic for X.For△x=∑j=1^mXj^2,we den... Let Q be a bounded open domain in R^n with smooth boundaryаΩ.Let X=(X1,X2…,Xm)be a system of general Grushin type vector fields defined onΩand the boundaryаΩis non-characteristic for X.For△x=∑j=1^mXj^2,we denoteλk as the k-th eigenvalue for the bi-subelliptic operator△X2^2 onΩ.In this paper,by using the sharp sub-elliptic estimates and maximally hypoeliptic estimates,we give the optimal lower bound estimates ofλk for the operatork△X^2. 展开更多
关键词 Eigenvalues DEGENERATE ELLIPTIC operators sub-elliptic ESTIMATE MAXIMALLY hypoelliptic ESTIMATE bi-subelliptic operator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部