期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Predicting protein subchloroplast locations:the 10th anniversary 被引量:1
1
作者 Jian SUN Pu-Feng DU 《Frontiers of Computer Science》 SCIE EI CSCD 2021年第2期1-11,共11页
Chloroplast is a type of subcellular organelle in green plants and algae.It is the main subcellular organelle for conducting photosynthetic process.The proteins,which localize within the chloroplast,are responsible fo... Chloroplast is a type of subcellular organelle in green plants and algae.It is the main subcellular organelle for conducting photosynthetic process.The proteins,which localize within the chloroplast,are responsible for the photosynthetic process at molecular level.The chloroplast can be further divided into several compartments.Proteins in different compartments are related to different steps in the photosynthetic process.Since the molecular function of a protein is highly correlated to the exact cellular localization,pinpointing the subchloroplast location of a chloroplast protein is an important step towards the understanding of its role in the photosynthetic process.Experimental process for determining protein subchloroplast location is always costly and time consuming.Therefore,computational approaches were developed to predict the protein subchloroplast locations from the primary sequences.Over the last decades,more than a dozen studies have tried to predict protein subchloroplast locations with machine learning methods.Various sequence features and various machine learning algorithms have been introduced in this research topic.In this review,we collected the comprehensive information of all existing studies regarding the prediction of protein subchloroplast locations.We compare these studies in the aspects of benchmarking datasets,sequence features,machine learning algorithms,predictive performances,and the implementation availability.We summarized the progress and current status in this special research topic.We also try to figure out the most possible future works in predicting protein subchloroplast locations.We hope this review not only list all existing works,but also serve the readers as a useful resource for quickly grasping the big picture of this research topic.We also hope this review work can be a starting point of future methodology studies regarding the prediction of protein subchloroplast locations. 展开更多
关键词 subchloroplast locations sequence features performance measures online services machine learning
原文传递
PREDICTING SUBCHLOROPLAST LOCATIONS OF PROTEINS BASED ON THE GENERAL FORM OF CHOU'S PSEUDO AMINO ACID COMPOSITION: APPROACHED FROM OPTIMAL TRIPEPTIDE COMPOSITION 被引量:3
2
作者 HAO LIN CHEN DING LU-FENG YUAN WEI CHEN HUI DING ZI-QIANG LI FENG-BIAO GUO JIAN HUANG NI-NI RAO 《International Journal of Biomathematics》 2013年第2期47-60,共14页
Chloroplasts are organelles found in plant cells that conduct photosynthesis. The subchloroplast locations of proteins are correlated with their functions. With the availability of a great number of protein data, it i... Chloroplasts are organelles found in plant cells that conduct photosynthesis. The subchloroplast locations of proteins are correlated with their functions. With the availability of a great number of protein data, it is highly desired to develop a com- putational method to predict the subchloroplast locations of chloroplast proteins. In this study, we proposed a novel method to predict subchloroplast locations of proteins using tripeptide compositions. It first used the binomial distribution to optimize the feature sets. Then the support vector machine was selected to perform the prediction of subchloroplast locations of proteins. The proposed method was tested on a reliable and rigorous dataset including 259 chloroplast proteins with sequence identity ≤ 25%. In the jack-knife cross-validation, 92.21% envelope proteins, 93.20% thylakoid mem- brane, 52.63% thylakoid lumen and 85.00% stroma can be correctly identified. The overall accuracy achieves 88.03% which is higher than that of other models. Based on this method, a predictor called ChloPred has been built and can be freely available from http://cobi.uestc.edu.cn/people/hlin/tools/ChloPred/. The predictor will provide important information for theoretical and experimental research of chloroplast proteins. 展开更多
关键词 subchloroplast localization TRIPEPTIDE binomial distribution support vectormachine.
原文传递
蛋白质的进化与结构信息对亚叶绿体蛋白定位的预测 被引量:1
3
作者 项新媛 李前忠 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期589-596,共8页
亚叶绿体定位是蛋白质亚细胞定位更深层次的问题,对研究叶绿体蛋白质的功能及其与其他大分子的相互作用具有重要的意义.本文计算了亚叶绿体蛋白质的化学位移关联信息和蛋白质保守位点的进化信息,通过分析和讨论这些特征信息,并结合基于... 亚叶绿体定位是蛋白质亚细胞定位更深层次的问题,对研究叶绿体蛋白质的功能及其与其他大分子的相互作用具有重要的意义.本文计算了亚叶绿体蛋白质的化学位移关联信息和蛋白质保守位点的进化信息,通过分析和讨论这些特征信息,并结合基于生物过程和分子功能的GO注释,提出了最佳组合参数,利用支持向量机算法对蛋白质亚叶绿体定位进行了预测,Jackknife检验的预测成功率达到了87.0%.同时在交叉检验和独立测试下都得到了较好的预测效果.利用本文提出的最佳组合参数有助于对未知蛋白质序列的检验,特别是对类囊体蛋白具有一定的影响. 展开更多
关键词 亚叶绿体定位 化学位移 Gene ONTOLOGY PSSM 支持向量机
下载PDF
基于多信息融合的亚叶绿体定位预测研究 被引量:1
4
作者 王瑞雪 李前忠 +1 位作者 闫振河 薛济先 《内蒙古大学学报(自然科学版)》 CAS 北大核心 2017年第1期80-90,共11页
叶绿体是植物进行光合作用的主要场所,预测亚叶绿体定位对于研究其功能以及与其他大分子相互作用有重要的意义,因此更准确地预测蛋白质亚叶绿体定位成为一项必要的工作.文章建立了新的蛋白质亚叶绿体数据集,计算了氨基酸单肽分段组分信... 叶绿体是植物进行光合作用的主要场所,预测亚叶绿体定位对于研究其功能以及与其他大分子相互作用有重要的意义,因此更准确地预测蛋白质亚叶绿体定位成为一项必要的工作.文章建立了新的蛋白质亚叶绿体数据集,计算了氨基酸单肽分段组分信息,氨基酸二肽组分信息,预测的蛋白质二级结构信息,氨基酸指数信息,基于生物过程和分子功能的GO注释信息,以及基于PSSM矩阵的进化信息和保守信息,结合支持向量机算法(SVM)预测了亚叶绿体蛋白质定位.Jackknife检验的总体预测成功率为93.16%,同时交叉验证和独立测试也获得了较好的结果,分别为93.72%和90.65%. 展开更多
关键词 亚叶绿体定位 GENE ONTOLOGY 二级结构 氨基酸指数 SVM独立检验
下载PDF
蛋白质亚叶绿体和亚线粒体定位预测研究进展
5
作者 王星支 李凤敏 王晓茜 《生物信息学》 2014年第4期276-280,共5页
蛋白质合成后被转运到特定的细胞器中,只有转运到正确的部位才能参与细胞的各种生命活动,有效地发挥功能,因此蛋白质的功能与其亚细胞定位有着密切的联系,通过确定蛋白质在细胞中的位置可以获取蛋白质功能和结构的信息。在近二十年中,... 蛋白质合成后被转运到特定的细胞器中,只有转运到正确的部位才能参与细胞的各种生命活动,有效地发挥功能,因此蛋白质的功能与其亚细胞定位有着密切的联系,通过确定蛋白质在细胞中的位置可以获取蛋白质功能和结构的信息。在近二十年中,蛋白质亚细胞定位预测算法研究已经取得很大的成绩,在此基础上,蛋白质在细胞器内亚结构的定位预测研究,如对蛋白质亚线粒体和亚叶绿体定位的研究成为更深层次的问题,本文简要介绍国内外在蛋白质亚叶绿体和亚线粒体定位预测方面的研究进展。 展开更多
关键词 亚线粒体 亚叶绿体 定位 预测 进展
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部