期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Carbon Isotope Fraction during Subduction Zone Metamorphism
1
作者 ZHU Jianjiang ZHANG Lifei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期254-,共1页
Carbon isotope derived from mantle rocks and diamonds occurring worldwide show a narrow interval of-8‰to-2‰,with a very broad distribution to lower values(;41‰)and higher values(;‰)(Cartigny et al.,2014).
关键词 Carbon Isotope Fraction during subduction Zone metamorphism
下载PDF
Aeromagnetic signatures of Precambrian shield and suture zones of Peninsular India 被引量:3
2
作者 Mita Rajaram S.P.Anand 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第1期3-15,共13页
In many Precambrian provinces the understanding of the tectonic history is constrained by limited exposure and aeromagnetic data provide information below the surface cover of sediments, water, etc. and help build a t... In many Precambrian provinces the understanding of the tectonic history is constrained by limited exposure and aeromagnetic data provide information below the surface cover of sediments, water, etc. and help build a tectonic model of the region. The advantage of using the aeromagnetic data is that the data set has uniform coverage and is independent of the accessibility of the region. In the present study, available reconnaissance scale aeromagnetic data over Peninsular India are analyzed to understand the magnetic signatures of the Precambrian shield and suture zones thereby throwing light on the tectonics of the region. Utilizing a combination of differential reduction to pole map, analytic signal, vertical and tilt derivative and upward continuation maps we are able to identify magnetic source distribution, tectonic elements, terrane boundaries, suture zones and metamorphic history of the region. The mag- netic sources in the region are mainly related to charnockites, iron ore and alkaline intrusives. Our analysis suggests that the Chitradurga boundary shear and Sileru shear are terrane boundaries while we interpret the signatures of Palghat Cauvery and Achankovil shears to represent suture zones. Processes like metamorphism leave their signatures on the magnetic data: prograde granulites (charnockites) and retrograde eclogites are known to have high susceptibility. We find that charnockites intruded by alkali plutons have higher magnetization compared to the retrogressed charnockites. We interpret that the Dharwar craton to the north of isograd representing greenschist to amphibolite facies transition, has been subjected to metamorphism under low geothermal conditions. Some recent studies suggest a plate tectonic model of subduction collision-accretion tectonics around the Palghat Cauvery shear zone (PCSZ). Our analysis is able to identify several west to east trending high amplitude magnetic anomalies with deep sources in the region from Palghat Cauvery shear to Achankovil shear. The magnetic high associated with PCSZ may represent the extruded high pressure-ultra high temperature metamorphic belt (granulites at shallow levels and retrogressed eclogites at deeper levels) formed as a result of subduction process. The EW highs within the Madurai block can be related to the metamorphosed clastic sediments, BIF and mafic/ultramafic bodies resulting from the process of accretion. 展开更多
关键词 Aeromagnetic interpretation Southern Granulite Terrain metamorphism Precambrian subduction Collision
下载PDF
Blueschist:A window into high-pressure/low-temperature metamorphism and subduction zone dynamics 被引量:1
3
作者 Jilei Li 《Science China Earth Sciences》 SCIE EI CSCD 2020年第12期1852-1867,共16页
Blueschist is a regional metamorphic rock formed under high-pressure(HP)low-temperature(LT)conditions.It is formed in the subduction zone environment with low geothermal gradients(4-14℃km^(−1)),and is characterized b... Blueschist is a regional metamorphic rock formed under high-pressure(HP)low-temperature(LT)conditions.It is formed in the subduction zone environment with low geothermal gradients(4-14℃km^(−1)),and is characterized by the presence of HP/LT index minerals like glaucophane,lawsonite,aragonite,jadeite,and deerite.In general,blueschist-facies rocks are stable in subduction zones at depths of 30-60 km,and transform to eclogite-facies rocks at greater depths.The preservation of blueschists requires a fast exhumation rate.Based on protolith and tectonic setting,blueschists can be grouped into Type-A and Type-B,but some metasomatic blueschists also occur.Blueschist belts distribute mainly as bands along the margins of orogenic belts,and their occurrences within cratons are very limited.Precambrian blueschists,of which the oldest ones are about 800-700 Ma in age,are rare;most of the exposed blueschist terranes are of post-Paleozoic metamorphic age.As diagnostic evidence of ancient subduction zones,blueschist plays an important role in understanding plate tectonics.Blueschist-eclogite transition at cold subduction zones involves dehydration reactions and fluid release,which are of great importance in facilitating slab-mantle wedge water and element recycling,generating arc magmatism,and triggering intermediate-depth earthquakes in the subducting slab.Metamorphic P-T paths of blueschists and associated rocks provide key information on constraining the onset of the subduction initiation and subsequent geodynamic evolution.As a cold geothermal indicator,the emergence of blueschist offers robust evidence for the start of modern plate tectonics on the Earth.Blueschist-facies metamorphism still represents an important research direction in metamorphic geology,which requires further investigations on determining the beginning of plate tectonics,constraining phase-transition processes,and constructing a global blueschist database. 展开更多
关键词 Glaucophane.Blueschist High-pressure metamorphism.subduction zone Plate tectonics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部