The Yancheng Sag is a favorable exploration area in the Subei Basin. However, the key geological understanding of the natural gas source and reservoir formation characteristics of the sag is still controversial. Based...The Yancheng Sag is a favorable exploration area in the Subei Basin. However, the key geological understanding of the natural gas source and reservoir formation characteristics of the sag is still controversial. Based on a set of organic geochemical experiments conducted on natural gas and associated condensate oil of the first member of the Funing Formation (E1f1) in well YCh5 and well data analysis, the oil-gas resources and reservoir formation model in the Zhujiadun gas reservoir in the Yancheng Sag, Subei Basin, were investigated. The results of this study are as follows. (1) The natural gas in the Zhujiadun gas reservoir is dry gas with high methane content, low heavy hydrocarbon content, and high maturity. The characteristics of carbon and hydrogen isotopes in the natural gas indicate that the natural gas is oil-cracked gas, which mainly originates from the source rocks of the Permian Qixia Formation. (2) The condensate oil from well YCh5 with a high degree of maturity has a high pristane/phytane ratio, low gamma-paraffin abundance, and low tricyclic terpene abundance, indicating a mixture of the Upper Paleozoic condensate oil and Cenozoic crude oil. The saturated and aromatic hydrocarbons have similar δ13C values to the Cenozoic continental crude oil. These features suggest two sources of condensate oil. (3) Oils generated from the source rocks of the Qixia Formation were cracked into highly mature gas after deep burial, which migrated along large faults into the sandstones of the E1f1 and K1t1 members. This type of reservoir was effectively preserved beneath the overlying mudstone cap rocks. Therefore, it can be inferred that a play fairway might occur in the eastern zone of the faults connected to the Paleozoic source rocks in the Yancheng Sag since this zone has similar petroleum geological conditions to well YCh5. Therefore, this zone is a favorable area for further exploration.展开更多
Sedimentary sequences in the Subei Basin are complex and have been affected by interactions between the ocean and rivers since the Late Pliocene, including the Yellow River, Huaihe River, and the Yangtze River. This s...Sedimentary sequences in the Subei Basin are complex and have been affected by interactions between the ocean and rivers since the Late Pliocene, including the Yellow River, Huaihe River, and the Yangtze River. This sedimentary evolution, in particular the timing of Pleistocene transgressions, has long been a matter of controversy owing to the lack of precise chronological evidence. The aim of this study is to explore the evolution of the sedimentary environment throughout the past 3.00 Ma in this region on the basis of a comprehensive analysis of particle size and foraminifera and ostracods collected in the TZK9 core from the Subei Basin combined with geochronological studies of magnetostratigraphy, AMS^(14)C and optically stimulated luminescence(OSL). The results show that fluvial facies in the sedimentary environment from 3.00 to 1.01 Ma. There were fluvial facies and reflects six sea-level high stands from 1.01 to 0.25 Ma. The study area was affected by four large-scale transgressions since 0.25 Ma. The four marine sedimentary layers known as DU7(buried at 48–52 m), DU5(buried at 35–41 m), DU3(buried at 16–23 m), and DU1(buried at 2–4 m) are recorded in the MIS7(210–250 ka), MIS5, MIS3, and Holocene, respectively. The magnitude of the DU5 transgression was identical to that of the DU3 transgression, both were larger than the DU7 transgression, and the DU1 transgression was the weakest. The variation of transgression strength reflects the influence of global changes in sea level, tectonic subsidence, shell ridges, and sand dams. In the TZK9 core, we found evidence of seven sea-level high stands from the Early–Middle Pleistocene, and the first one caused by regional rapid subsidence and could be traced back to 0.83-0.84 Ma. The sea-level high stands and the age of the first one recorded above was different from other cores in eastern China, this was caused by the lack of absolute age control and the differences in paleotopography during this period. This study reconstructs sedimentary evolution, determines the transgression and its age, establishes the chronology since the Late Pliocene, and provides a scientific framework for further paleoenvironmental and tectonic studies. The results of this study highlight the important role that local tectonics and global sea level play in the sedimentary evolution and transgressions that have occurred in the western Subei Basin.展开更多
The Subei Shoal is a special coastal area with complex physical oceanographic properties in the Yellow Sea.In the present study,the distribution of phytoplankton and its correlation with environmental factors were stu...The Subei Shoal is a special coastal area with complex physical oceanographic properties in the Yellow Sea.In the present study,the distribution of phytoplankton and its correlation with environmental factors were studied during spring and summer of 2012 in the Subei Shoal of the Yellow Sea.Phytoplankton species composition and abundance data were accomplished by Utermohl method.Diatoms represented the greatest cellular abundance during the study period.In spring,the phytoplankton cell abundance ranged from 1.59×10^3 to 269.78×10^3 cell/L with an average of 41.80×10^3 cell/L,and Skeletonema sp.and Paralia sulcata was the most dominant species.In summer,the average phytoplankton cell abundance was 72.59×10^3 cell/L with the range of 1.78×10^3 to 574.96×10^3 cell/L,and the main dominant species was Pseudo-nitzschia pungens,Skeletonema sp.,Dactyliosolen fragilissima and Chaetoceros curvisetus.The results of a redundancy analysis(RDA)showed that turbidity,temperature,salinity,pH,dissolved oxygen(DO),the ratio of dissolved inorganic nitrogen to silicate and SiO4-Si(DIN/SiO4-Si)were the most important environmental factors controlling phytoplankton assemblages in spring or summer in the Subei Shoal of the Yellow Sea.展开更多
Strata erosion is a widespread phenomenon in sedimentary basins. The generation, migration, and accumulation of hydrocarbon is influenced by the scale of erosion, so estimating the amount of erosion is essential in th...Strata erosion is a widespread phenomenon in sedimentary basins. The generation, migration, and accumulation of hydrocarbon is influenced by the scale of erosion, so estimating the amount of erosion is essential in the analysis of oil and gas bearing basins. According to the geological features in the Subei Basin and the actual data, using the integrated method, we estimated the level of erosion at the unconformities caused by the Sanduo event. By using the mudstone interval transit time method and the vitrinite reflectance method on data from typical wells, it can be concluded that the Gaoyou, Jinhu, and Hongze depressions suffered strong strata erosion from the late Eocene to Oligocene, and the total strata erosion thickness was 300–1,100 m. Different tectonic units in the same depression have extremely uneven erosion intensity: the low convex regions have the maximum erosion thickness, amounting to 800–1,100 m; the slope regions have an erosion thickness of generally 600–800 m; the erosion thickness of the slope-hollow transition zone is 300–500 m. For the whole basin, we used the strata thickness trend analysis method combined with the interval transit time and vitrinite reflectance methods to estimate the erosion thickness in the Sanduo period. The results show that the most severe erosion of the Sanduo event in the Subei Basin is between 1,000 m to 1,200 m, mainly located in depressions around the Jianhu Uplift; the deep hollow area has the least erosion, generally about 300–600 m, and the erosion in the slope area is about 600–900 m. Compared with the northern part, the southern part has relatively little erosion. It is also proved that the Sanduo movement has heterogeneous intensity, and the western region has greater intensity than the eastern region.展开更多
The geological background of the Subei basin is that of small relief subsidence, low geothermal gradient, multi-sedimentary hiatuses, intense reconstruction of the basin, frequent magmatic activity, and a unique combi...The geological background of the Subei basin is that of small relief subsidence, low geothermal gradient, multi-sedimentary hiatuses, intense reconstruction of the basin, frequent magmatic activity, and a unique combination of source rock and reservoir. This geological background resulted in characteristics such as many small fault blocks, multiple oil-bearing formations, scattered oil distribution, mini- to small-sized reservoirs, and difficulties in exploration. Aimed at such characteristics, an effective exploration strategy was adopted, and the oil reserves, production and economic benefits of the Jiangsu oilfield were significantly increased. This exploration strategy included understanding the hydrocarbon generation mechanism of source rocks, progressive evaluation of oil resources, comprehensive research on the faulted systems, the distribution of oil reservoirs and their controlling factors. The techniques used included integration of acquisition, processing and interpretation with 3-D seismics as the core technology, trap description and evaluation, directional drilling and cluster drilling, integration of cuttings logging, gas chromatographic logging and geochemical logging, and integration of early reservoir description and progressive exploration and development. This strategy could be guidance for other complex fault blocks.展开更多
Thick sediments from foreland basins usually provide valuable information for understanding the relationships between mountain building,rock denudation,and sediment deposition.In this paper,we report environmental mag...Thick sediments from foreland basins usually provide valuable information for understanding the relationships between mountain building,rock denudation,and sediment deposition.In this paper,we report environmental magnetic measurements performed on the Miocene sediments in the Subei Basin,northeastern Tibetan Plateau.Our results show two different patterns.First,the bulk susceptibility and SIRM,ARM,and HIRM mainly reflect the absolute-concentration of magnetic minerals;all have increased remarkably since 13.7 Ma,related to provenance change rather than climate change.Second,the ratios of IRM100mT/SIRM,IRM100mT/IRM30mT,and IRM100mT/IRM60mT,together with the redness and S ratio,reflect the relative-concentration of hematite,being climate-dependent.Their vertical changes correlate in general with the long-term Miocene climatic records of marine oxygen isotope variations,marked by the existence of higher ratios between 17 and 14 Ma.This may imply that global climate change,rather than uplift of the Tibetan Plateau,played a dominant role in the long-term climatic evolution of the Subei area from the early to middle Miocene.展开更多
Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the ...Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the East Asian winter monsoon (EAWM), El Nifio-Southem Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). In this study, correlations between climatic events and SST anomalies (SSTA) around the Subei (North Jiangsu Province, East China) Coast from 1981-2012 are analyzed, using empirical orthogonal function (EOF) and correlation analyses. First, a key region was determined by EOF analysis to represent the Subei coastal waters. Then, coherency analyses were performed on this key region. According to the correlation analysis, the EAWM index has a positive correlation with the spring and summer SSTA of the key region. Furthermore, the Nifio3.4 index is negatively correlated with the spring and summer SSTA of the key region 1 year ahead, and the PDO has significant negative coherency with spring SSTA and negative coherency with summer SSTA in the key region 1 year ahead. Overall, PDO exhibits the most significant impact on SSTA of the key region. In the key region, all these factors are correlated more significantly with SSTA in spring than in summer. This suggests that outbreaks ofEnteromorpha prolifera in the Yellow Sea are affected by global climatic changes, especially the PDO.展开更多
The Subei Shoal is the largest sandy ridge in the southern Yellow Sea and is important source for nutrient loading to the sea.Here,the nutrient fluxes in the Subei Shoal associated with eddy diffusion and submarine gr...The Subei Shoal is the largest sandy ridge in the southern Yellow Sea and is important source for nutrient loading to the sea.Here,the nutrient fluxes in the Subei Shoal associated with eddy diffusion and submarine groundwater discharge(SGD)were assessed to understand their impacts on the nutrient budget in the Yellow Sea.Based on the analysis of 223 Ra and 224 Ra in the field observation,the offshore eddy diffusivity mixing coefficient and SGD were estimated to be 2.3×10^(8)cm^(2)/s and 2.6×10^(9)m^(3)/d(16 cm/d),respectively,in the Subei Shoal.Combined the significant offshore decreasing gradients of nutrient in seawater of the Subei Shoal,the spatially integrated nutrient outwelling fluxes to the Yellow Sea were 262-1465μmol/(m^(2)·d)for DIN,5.2-21μmol/(m^(2)·d)for DIP and711-913μmol/(m^(2)·d)for DSi.Compared to the riverine input,atmospheric deposition and mariculture,nutrient outwelling from the Subei Shoal might play an important role in nutrient budget of the Yellow Sea.These nutrient fluxes could provide 4.1%-23%N and 1.3%-5.3%P requirements for the primary productivity,and the deviated DIN/DIP ratios have the potential to affect the growth of phytoplankton in the marine ecosystem of the Yellow Sea.展开更多
To discover the distribution of green algal micro-propagules in the Subei Shoal and clarify the growth of green macroalgae attached on Pyropia aquaculture rafts,an integrated investigation in Pyropia aquaculture area ...To discover the distribution of green algal micro-propagules in the Subei Shoal and clarify the growth of green macroalgae attached on Pyropia aquaculture rafts,an integrated investigation in Pyropia aquaculture area and one cruise in the coastal area of the Subei Shoal were carried out from March to May in 2013.The results showed that green algal micro-propagules were discovered in seawater and sediment during March to May.The average quantity of micro-propagules was 267 ind./L in surface seawater and 43 ind./g in sediment.The biomass of attached green macroalgae increased in Pyropia aquaculture from March to May.Three species,including Ulva prolifera,Ulva linza and Blidingia sp.were found in Pyropia aquaculture rafts.The dominant specie was Blidingia sp.and the second was U.prolifera in spring.This study indicated that the micro-propagules and macroalgae were existed in the coastal area of the Subei Shoal at the early stage of green tide.This was the key point to the governance of green tide in China.展开更多
[Objective] The study aimed to analyze vegetation succession process under groundwater mining conditions in Subei Lake watershed. [ Method] A succession model for vegetation and burial depth of groundwater level was c...[Objective] The study aimed to analyze vegetation succession process under groundwater mining conditions in Subei Lake watershed. [ Method] A succession model for vegetation and burial depth of groundwater level was constructed based on field survey, and it was used to pre- dict the vegetation succession rules and process according to the changes in burial depth of groundwater level in Subei Lake watershed under groundwater exploitation. [ Result~ In Subei Lake watershed, aquatic vegetation was most closely related to burial depth of groundwater level, fol- lowed by mesophytic vegetation, while psammophilous and xerophytic vegetation did not have obvious relation with burial depth of groundwater lev- el. When burial depth of groundwater level was small, dominant plants grew well, but they grew worse or died with the increase in burial depth of groundwater level. As the groundwater level fell constantly, burial depth of groundwater level went up, and vegetation succession would occur grad- ually from aquatic vegetation to mesophytic and xerophytic vegetation, from Carex L. and Iris ensata Thunb shoaly land to Achnatherum splendens shoaly lands, from Salix psammophila shrubs to Artemisia desterorum Spreng and Caragana korshinskii shrubs, and from Populus simonii to Salix matsudana. [Condusion] The research could provide scientific references for studying the relationship between groundwater resources and ecological environment in Subei Lake basin.展开更多
[ Objective] The research aimed to evaluate ecological vulnerability of the vegetation in the Subei Lake watershed based on analytic hierarchy process (AHP). [ Method] From actual situation of the vegetation ecology...[ Objective] The research aimed to evaluate ecological vulnerability of the vegetation in the Subei Lake watershed based on analytic hierarchy process (AHP). [ Method] From actual situation of the vegetation ecology in the Subei Lake watershed, by the established evaluation index system of vegetation ecology, based on AHP, indicator weight at each layer was determined. Comprehensive index method was used to calculate ecological fragility degree of the vegetation in each evaluation unit to evaluate ecological vulnerability of the vegetation. [ Result] Ecological vulnera- bility of the vegetation was divided into four levels, such as extremely fragile, highly fragile, moderately fragile and lowly fragile in the Subei Lake watershed. The extremely fragile area, where buried depth of the groundwater level was generally less than 1.0 meter, distributed in beach zones near the Subei Lake, and its relationship between vegetation and groundwater was close. The lowly fragile areas scattered in the ridge zone around the Subei Lake watershed, where buried depth of the groundwater level was 10.0 -40.0 meters, and their relationship between vegetation growth and groundwater depth was not obvious. Buried depth of groundwater had the most sensitive influence on vegetation ecology, and it was the key factor between utilization of groundwater resources and eco-environment protection in the study area. E Conclusion] The researches provided scientific evidence for regional eco-environment protection, rational development and utilization of water resources, and coordinated development of economy and society.展开更多
Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small s...Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small scattered patches of green tide algae were first observed along the Porphyra agriculture area of the Subei Shoal in late April.In this study,we attempted to identify the role of eutrophication in the origin of the green tide in the Subei Shoal and its adjacent area.Subei Shoal and its adjacent area are characterized by rich nutrients,especially NO_(3)^(-)-N,NH_(4)^(+)-N,PO_(4)^(3-)-P,and other bioavailable components(such as urea-N and amino acids).In the spring of 2017,the average concentrations of NO_(3)^(-)-N were 19.01±11.01μmolL^(-1),accounting for 86.68%of the dis-solved inorganic nitrogen(DIN).In addition,the average concentration of NH4^(+)-N was 2.51±1.60μmolL^(-1).PO_(4)^(3-)-P had an average concentration of 0.14±0.13μmolL-1.The average concentrations of urea-N and total hydrolyzed amino acids(THAA)were 1.73±1.36μmolL^(-1)and 1.33±0.80μmolL^(-1),respectively.Rich nutritive substances play a key role in the rapid production of U.prolifera and make the Jiangsu coastal water an incubator for green tide.展开更多
基金funded by a project entitled Middle-Paleozoic Hydrocarbon Accumulation Conditions and Favorable Area Evaluation of the Subei-South Yellow Sea Basin (P21086-6), initiated by the Sinopec Oilfield Service Corporation.
文摘The Yancheng Sag is a favorable exploration area in the Subei Basin. However, the key geological understanding of the natural gas source and reservoir formation characteristics of the sag is still controversial. Based on a set of organic geochemical experiments conducted on natural gas and associated condensate oil of the first member of the Funing Formation (E1f1) in well YCh5 and well data analysis, the oil-gas resources and reservoir formation model in the Zhujiadun gas reservoir in the Yancheng Sag, Subei Basin, were investigated. The results of this study are as follows. (1) The natural gas in the Zhujiadun gas reservoir is dry gas with high methane content, low heavy hydrocarbon content, and high maturity. The characteristics of carbon and hydrogen isotopes in the natural gas indicate that the natural gas is oil-cracked gas, which mainly originates from the source rocks of the Permian Qixia Formation. (2) The condensate oil from well YCh5 with a high degree of maturity has a high pristane/phytane ratio, low gamma-paraffin abundance, and low tricyclic terpene abundance, indicating a mixture of the Upper Paleozoic condensate oil and Cenozoic crude oil. The saturated and aromatic hydrocarbons have similar δ13C values to the Cenozoic continental crude oil. These features suggest two sources of condensate oil. (3) Oils generated from the source rocks of the Qixia Formation were cracked into highly mature gas after deep burial, which migrated along large faults into the sandstones of the E1f1 and K1t1 members. This type of reservoir was effectively preserved beneath the overlying mudstone cap rocks. Therefore, it can be inferred that a play fairway might occur in the eastern zone of the faults connected to the Paleozoic source rocks in the Yancheng Sag since this zone has similar petroleum geological conditions to well YCh5. Therefore, this zone is a favorable area for further exploration.
基金supported by the China Geological Survey Project(DD20160060,121201140 42901)the National Natural Science Foundation of China(41502119,41371207)
文摘Sedimentary sequences in the Subei Basin are complex and have been affected by interactions between the ocean and rivers since the Late Pliocene, including the Yellow River, Huaihe River, and the Yangtze River. This sedimentary evolution, in particular the timing of Pleistocene transgressions, has long been a matter of controversy owing to the lack of precise chronological evidence. The aim of this study is to explore the evolution of the sedimentary environment throughout the past 3.00 Ma in this region on the basis of a comprehensive analysis of particle size and foraminifera and ostracods collected in the TZK9 core from the Subei Basin combined with geochronological studies of magnetostratigraphy, AMS^(14)C and optically stimulated luminescence(OSL). The results show that fluvial facies in the sedimentary environment from 3.00 to 1.01 Ma. There were fluvial facies and reflects six sea-level high stands from 1.01 to 0.25 Ma. The study area was affected by four large-scale transgressions since 0.25 Ma. The four marine sedimentary layers known as DU7(buried at 48–52 m), DU5(buried at 35–41 m), DU3(buried at 16–23 m), and DU1(buried at 2–4 m) are recorded in the MIS7(210–250 ka), MIS5, MIS3, and Holocene, respectively. The magnitude of the DU5 transgression was identical to that of the DU3 transgression, both were larger than the DU7 transgression, and the DU1 transgression was the weakest. The variation of transgression strength reflects the influence of global changes in sea level, tectonic subsidence, shell ridges, and sand dams. In the TZK9 core, we found evidence of seven sea-level high stands from the Early–Middle Pleistocene, and the first one caused by regional rapid subsidence and could be traced back to 0.83-0.84 Ma. The sea-level high stands and the age of the first one recorded above was different from other cores in eastern China, this was caused by the lack of absolute age control and the differences in paleotopography during this period. This study reconstructs sedimentary evolution, determines the transgression and its age, establishes the chronology since the Late Pliocene, and provides a scientific framework for further paleoenvironmental and tectonic studies. The results of this study highlight the important role that local tectonics and global sea level play in the sedimentary evolution and transgressions that have occurred in the western Subei Basin.
基金The Public Science and Technology Research Funds Projects of the Ocean under contract Nos 201205010 and201205009-5the National Science&Technology Pillar Program under contract No.2012BAC07B03+3 种基金the National Natural Science Foundation of China under contract No.41206111the Chinese Science and Technology Base Projects under contract No.2012FY112500the Shanghai Universities First-class Disciplines Project(Disapline name:Marine Science(0707))the Plateau Peak Disciplines Project of Shanghai Universities(Marine Science 0707)
文摘The Subei Shoal is a special coastal area with complex physical oceanographic properties in the Yellow Sea.In the present study,the distribution of phytoplankton and its correlation with environmental factors were studied during spring and summer of 2012 in the Subei Shoal of the Yellow Sea.Phytoplankton species composition and abundance data were accomplished by Utermohl method.Diatoms represented the greatest cellular abundance during the study period.In spring,the phytoplankton cell abundance ranged from 1.59×10^3 to 269.78×10^3 cell/L with an average of 41.80×10^3 cell/L,and Skeletonema sp.and Paralia sulcata was the most dominant species.In summer,the average phytoplankton cell abundance was 72.59×10^3 cell/L with the range of 1.78×10^3 to 574.96×10^3 cell/L,and the main dominant species was Pseudo-nitzschia pungens,Skeletonema sp.,Dactyliosolen fragilissima and Chaetoceros curvisetus.The results of a redundancy analysis(RDA)showed that turbidity,temperature,salinity,pH,dissolved oxygen(DO),the ratio of dissolved inorganic nitrogen to silicate and SiO4-Si(DIN/SiO4-Si)were the most important environmental factors controlling phytoplankton assemblages in spring or summer in the Subei Shoal of the Yellow Sea.
文摘Strata erosion is a widespread phenomenon in sedimentary basins. The generation, migration, and accumulation of hydrocarbon is influenced by the scale of erosion, so estimating the amount of erosion is essential in the analysis of oil and gas bearing basins. According to the geological features in the Subei Basin and the actual data, using the integrated method, we estimated the level of erosion at the unconformities caused by the Sanduo event. By using the mudstone interval transit time method and the vitrinite reflectance method on data from typical wells, it can be concluded that the Gaoyou, Jinhu, and Hongze depressions suffered strong strata erosion from the late Eocene to Oligocene, and the total strata erosion thickness was 300–1,100 m. Different tectonic units in the same depression have extremely uneven erosion intensity: the low convex regions have the maximum erosion thickness, amounting to 800–1,100 m; the slope regions have an erosion thickness of generally 600–800 m; the erosion thickness of the slope-hollow transition zone is 300–500 m. For the whole basin, we used the strata thickness trend analysis method combined with the interval transit time and vitrinite reflectance methods to estimate the erosion thickness in the Sanduo period. The results show that the most severe erosion of the Sanduo event in the Subei Basin is between 1,000 m to 1,200 m, mainly located in depressions around the Jianhu Uplift; the deep hollow area has the least erosion, generally about 300–600 m, and the erosion in the slope area is about 600–900 m. Compared with the northern part, the southern part has relatively little erosion. It is also proved that the Sanduo movement has heterogeneous intensity, and the western region has greater intensity than the eastern region.
文摘The geological background of the Subei basin is that of small relief subsidence, low geothermal gradient, multi-sedimentary hiatuses, intense reconstruction of the basin, frequent magmatic activity, and a unique combination of source rock and reservoir. This geological background resulted in characteristics such as many small fault blocks, multiple oil-bearing formations, scattered oil distribution, mini- to small-sized reservoirs, and difficulties in exploration. Aimed at such characteristics, an effective exploration strategy was adopted, and the oil reserves, production and economic benefits of the Jiangsu oilfield were significantly increased. This exploration strategy included understanding the hydrocarbon generation mechanism of source rocks, progressive evaluation of oil resources, comprehensive research on the faulted systems, the distribution of oil reservoirs and their controlling factors. The techniques used included integration of acquisition, processing and interpretation with 3-D seismics as the core technology, trap description and evaluation, directional drilling and cluster drilling, integration of cuttings logging, gas chromatographic logging and geochemical logging, and integration of early reservoir description and progressive exploration and development. This strategy could be guidance for other complex fault blocks.
基金the National Nature Science Foundation of China(grants 41888101)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20070202).
文摘Thick sediments from foreland basins usually provide valuable information for understanding the relationships between mountain building,rock denudation,and sediment deposition.In this paper,we report environmental magnetic measurements performed on the Miocene sediments in the Subei Basin,northeastern Tibetan Plateau.Our results show two different patterns.First,the bulk susceptibility and SIRM,ARM,and HIRM mainly reflect the absolute-concentration of magnetic minerals;all have increased remarkably since 13.7 Ma,related to provenance change rather than climate change.Second,the ratios of IRM100mT/SIRM,IRM100mT/IRM30mT,and IRM100mT/IRM60mT,together with the redness and S ratio,reflect the relative-concentration of hematite,being climate-dependent.Their vertical changes correlate in general with the long-term Miocene climatic records of marine oxygen isotope variations,marked by the existence of higher ratios between 17 and 14 Ma.This may imply that global climate change,rather than uplift of the Tibetan Plateau,played a dominant role in the long-term climatic evolution of the Subei area from the early to middle Miocene.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB950403)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020301)+1 种基金the National Natural Science Foundation of China(No.41176018)the Special Fund for Marine Research in the Public Interest(No.201005006)
文摘Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the East Asian winter monsoon (EAWM), El Nifio-Southem Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). In this study, correlations between climatic events and SST anomalies (SSTA) around the Subei (North Jiangsu Province, East China) Coast from 1981-2012 are analyzed, using empirical orthogonal function (EOF) and correlation analyses. First, a key region was determined by EOF analysis to represent the Subei coastal waters. Then, coherency analyses were performed on this key region. According to the correlation analysis, the EAWM index has a positive correlation with the spring and summer SSTA of the key region. Furthermore, the Nifio3.4 index is negatively correlated with the spring and summer SSTA of the key region 1 year ahead, and the PDO has significant negative coherency with spring SSTA and negative coherency with summer SSTA in the key region 1 year ahead. Overall, PDO exhibits the most significant impact on SSTA of the key region. In the key region, all these factors are correlated more significantly with SSTA in spring than in summer. This suggests that outbreaks ofEnteromorpha prolifera in the Yellow Sea are affected by global climatic changes, especially the PDO.
基金The National Science and Technology Major Project of the Ministry of Science and Technology of China under contract No.2016YFC1402106the National Natural Science Foundation of China under contract Nos 41376089,41576083,41976040,41876127 and 42030402the China Postdoctoral Science Foundation under contract No.2020M671048。
文摘The Subei Shoal is the largest sandy ridge in the southern Yellow Sea and is important source for nutrient loading to the sea.Here,the nutrient fluxes in the Subei Shoal associated with eddy diffusion and submarine groundwater discharge(SGD)were assessed to understand their impacts on the nutrient budget in the Yellow Sea.Based on the analysis of 223 Ra and 224 Ra in the field observation,the offshore eddy diffusivity mixing coefficient and SGD were estimated to be 2.3×10^(8)cm^(2)/s and 2.6×10^(9)m^(3)/d(16 cm/d),respectively,in the Subei Shoal.Combined the significant offshore decreasing gradients of nutrient in seawater of the Subei Shoal,the spatially integrated nutrient outwelling fluxes to the Yellow Sea were 262-1465μmol/(m^(2)·d)for DIN,5.2-21μmol/(m^(2)·d)for DIP and711-913μmol/(m^(2)·d)for DSi.Compared to the riverine input,atmospheric deposition and mariculture,nutrient outwelling from the Subei Shoal might play an important role in nutrient budget of the Yellow Sea.These nutrient fluxes could provide 4.1%-23%N and 1.3%-5.3%P requirements for the primary productivity,and the deviated DIN/DIP ratios have the potential to affect the growth of phytoplankton in the marine ecosystem of the Yellow Sea.
基金The National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406403the National Natural Science Foundation of China under contract No.41276119the International Scientific Cooperation Program of the Ministry of Science and Technology of China under contract No.2010DFA24340
文摘To discover the distribution of green algal micro-propagules in the Subei Shoal and clarify the growth of green macroalgae attached on Pyropia aquaculture rafts,an integrated investigation in Pyropia aquaculture area and one cruise in the coastal area of the Subei Shoal were carried out from March to May in 2013.The results showed that green algal micro-propagules were discovered in seawater and sediment during March to May.The average quantity of micro-propagules was 267 ind./L in surface seawater and 43 ind./g in sediment.The biomass of attached green macroalgae increased in Pyropia aquaculture from March to May.Three species,including Ulva prolifera,Ulva linza and Blidingia sp.were found in Pyropia aquaculture rafts.The dominant specie was Blidingia sp.and the second was U.prolifera in spring.This study indicated that the micro-propagules and macroalgae were existed in the coastal area of the Subei Shoal at the early stage of green tide.This was the key point to the governance of green tide in China.
基金Supported by the Large Survey Project of Ministry of Land and Resources,China (1212010734002)
文摘[Objective] The study aimed to analyze vegetation succession process under groundwater mining conditions in Subei Lake watershed. [ Method] A succession model for vegetation and burial depth of groundwater level was constructed based on field survey, and it was used to pre- dict the vegetation succession rules and process according to the changes in burial depth of groundwater level in Subei Lake watershed under groundwater exploitation. [ Result~ In Subei Lake watershed, aquatic vegetation was most closely related to burial depth of groundwater level, fol- lowed by mesophytic vegetation, while psammophilous and xerophytic vegetation did not have obvious relation with burial depth of groundwater lev- el. When burial depth of groundwater level was small, dominant plants grew well, but they grew worse or died with the increase in burial depth of groundwater level. As the groundwater level fell constantly, burial depth of groundwater level went up, and vegetation succession would occur grad- ually from aquatic vegetation to mesophytic and xerophytic vegetation, from Carex L. and Iris ensata Thunb shoaly land to Achnatherum splendens shoaly lands, from Salix psammophila shrubs to Artemisia desterorum Spreng and Caragana korshinskii shrubs, and from Populus simonii to Salix matsudana. [Condusion] The research could provide scientific references for studying the relationship between groundwater resources and ecological environment in Subei Lake basin.
基金Supported by Big Investigation Item,Ministry of Land and Resources,China(1212010734002,1212010634204)
文摘[ Objective] The research aimed to evaluate ecological vulnerability of the vegetation in the Subei Lake watershed based on analytic hierarchy process (AHP). [ Method] From actual situation of the vegetation ecology in the Subei Lake watershed, by the established evaluation index system of vegetation ecology, based on AHP, indicator weight at each layer was determined. Comprehensive index method was used to calculate ecological fragility degree of the vegetation in each evaluation unit to evaluate ecological vulnerability of the vegetation. [ Result] Ecological vulnera- bility of the vegetation was divided into four levels, such as extremely fragile, highly fragile, moderately fragile and lowly fragile in the Subei Lake watershed. The extremely fragile area, where buried depth of the groundwater level was generally less than 1.0 meter, distributed in beach zones near the Subei Lake, and its relationship between vegetation and groundwater was close. The lowly fragile areas scattered in the ridge zone around the Subei Lake watershed, where buried depth of the groundwater level was 10.0 -40.0 meters, and their relationship between vegetation growth and groundwater depth was not obvious. Buried depth of groundwater had the most sensitive influence on vegetation ecology, and it was the key factor between utilization of groundwater resources and eco-environment protection in the study area. E Conclusion] The researches provided scientific evidence for regional eco-environment protection, rational development and utilization of water resources, and coordinated development of economy and society.
基金supported by the Joint Fund between NSFC and Shandong Province(No.U1906210)the China National Key Research and Development Program(No.2016YFC1402101).
文摘Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small scattered patches of green tide algae were first observed along the Porphyra agriculture area of the Subei Shoal in late April.In this study,we attempted to identify the role of eutrophication in the origin of the green tide in the Subei Shoal and its adjacent area.Subei Shoal and its adjacent area are characterized by rich nutrients,especially NO_(3)^(-)-N,NH_(4)^(+)-N,PO_(4)^(3-)-P,and other bioavailable components(such as urea-N and amino acids).In the spring of 2017,the average concentrations of NO_(3)^(-)-N were 19.01±11.01μmolL^(-1),accounting for 86.68%of the dis-solved inorganic nitrogen(DIN).In addition,the average concentration of NH4^(+)-N was 2.51±1.60μmolL^(-1).PO_(4)^(3-)-P had an average concentration of 0.14±0.13μmolL-1.The average concentrations of urea-N and total hydrolyzed amino acids(THAA)were 1.73±1.36μmolL^(-1)and 1.33±0.80μmolL^(-1),respectively.Rich nutritive substances play a key role in the rapid production of U.prolifera and make the Jiangsu coastal water an incubator for green tide.