期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Inductive Relation Prediction by Disentangled Subgraph Structure
1
作者 Guiduo Duan Rui Guo +2 位作者 Wenlong Luo Guangchun Luo Tianxi Huang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1566-1579,共14页
Currently,most existing inductive relation prediction approaches are based on subgraph structures,with subgraph features extracted using graph neural networks to predict relations.However,subgraphs may contain disconn... Currently,most existing inductive relation prediction approaches are based on subgraph structures,with subgraph features extracted using graph neural networks to predict relations.However,subgraphs may contain disconnected regions,which usually represent different semantic ranges.Because not all semantic information about the regions is helpful in relation prediction,we propose a relation prediction model based on a disentangled subgraph structure and implement a feature updating approach based on relevant semantic aggregation.To indirectly achieve the disentangled subgraph structure from a semantic perspective,the mapping of entity features into different semantic spaces and the aggregation of related semantics on each semantic space are updated.The disentangled model can focus on features having higher semantic relevance in the prediction,thus addressing a problem with existing approaches,which ignore the semantic differences in different subgraph structures.Furthermore,using a gated recurrent neural network,this model enhances the features of entities by sorting them by distance and extracting the path information in the subgraphs.Experimentally,it is shown that when there are numerous disconnected regions in the subgraph,our model outperforms existing mainstream models in terms of both Area Under the Curve-Precision-Recall(AUC-PR)and Hits@10.Experiments prove that semantic differences in the knowledge graph can be effectively distinguished and verify the effectiveness of this method. 展开更多
关键词 disentangled subgraph structure knowledge graph completion Gated Recurrent Unit(GRU) feature updating
原文传递
Matching user identities across social networks with limited profile data
2
作者 Ildar NURGALIEV Qiang QU +1 位作者 Seyed Mojtaba Hosseini BAMAKAN Muhammad MUZAMMAL 《Frontiers of Computer Science》 SCIE EI CSCD 2020年第6期171-184,共14页
Privacy preservation is a primary concern in social networks which employ a variety of privacy preservations mechanisms to preserve and protect sensitive user information including age,location,education,interests,and... Privacy preservation is a primary concern in social networks which employ a variety of privacy preservations mechanisms to preserve and protect sensitive user information including age,location,education,interests,and others.The task of matching user identities across different social networks is considered a challenging task.In this work,we propose an algorithm to reveal user identities as a set of linked accounts from different social networks using limited user profile data,i.e,user-name and friendship.Thus,we propose a framework,ExpandUIL,that includes three standalone al-gorithms based on(i)the percolation graph matching in Ex-pand FullName algorithm,(i)a supervised machine learning algorithm that works with the graph embedding,and(ii)a combination of the two,ExpandUserLinkage algorithm.The proposed framework as a set of algorithms is significant as,(i)it is based on the network topology and requires only name feature of the nodes,(i)it requires a considerably low initial seed,as low as one initial seed suffices,(ii)it is iterative and scalable with applicability to online incoming stream graphs,and(iv)it has an experimental proof of stability over a real ground-truth dataset.Experiments on real datasets,Instagram and VK social networks,show upto 75%recall for linked ac-counts with 96%accuracy using only one given seed pair. 展开更多
关键词 social networks user identity linkage graph structure learning maximum subgraph matching graph percolation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部