The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive comp...The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework.展开更多
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie...In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.展开更多
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
The Qom Formation is the most important hydrocarbon reservoir target in Central Iran.The Qom platform developed in a back-arc basin during the Oligo-Miocene due to the closing of the Tethyan Seaway.This formation cons...The Qom Formation is the most important hydrocarbon reservoir target in Central Iran.The Qom platform developed in a back-arc basin during the Oligo-Miocene due to the closing of the Tethyan Seaway.This formation consists of a variety of carbonate and non-carbonate facies deposited on a platform ranging from supratidal to basin.A combination of tectonic and eustatic events led to some lateral and vertical facies variations in the study area.Six third-order depositional sequences and related surfaces were identified regarding vertical facies changes in the studied sections of this Oligo-Miocene succession.According to all results and data,this succession was initially deposited during the Chattian upon a distally steepened ramp of siliciclastic-carbonate composition,including the Bouma sequence.Then,from the late Chattian to the Aquitanian,the platform changed into a homoclinal carbonate ramp with a gentle profile.With respect to tectonic activity,this phase was a calm period during the deposition of the Qom Formation.Finally,a drowned carbonate platform and a rimmed shelf emerged during the Burdigalian,terminated by the continental deposits of the Upper Red Formation.Regarding all geological characteristics,three main tectono-eustatic evolutionary phases have been recognized in the Qom back-arcbasin.展开更多
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w...Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.展开更多
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression...A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline.展开更多
Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwate...Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.展开更多
High-resolution 3D seismic data analysis was integrated with a calibrated well and biostratigraphy data to present the first overview of a buried Pleistocene canyon system on the upper slope of the eastern Niger Delta...High-resolution 3D seismic data analysis was integrated with a calibrated well and biostratigraphy data to present the first overview of a buried Pleistocene canyon system on the upper slope of the eastern Niger Delta,the Galabor Canyon.Attribute maps of specific horizons allow documenting the changing morphologies and infill lithologies of two main branches of the canyon through two stages of activity separated by a reference horizon dated at 0.99 Ma based on well calibration.At the upper slope,growth faults dissect the canyon heads,the catchment of which encroaches a network of valleys incised on the outer shelf.The canyon fill is composed of muddy channels and mass-transport deposits,largely derived from the collapse of canyon walls and sand-rich bodies forming a tract sourced by shelf-edge deltas at the outlet of the incised valleys.High-density turbiditic processes likely control the distribution of sand bodies along the canyon,ranging from tributary fans on the upper slope to 6 km-wide meander belts on the middle slope.The sandy deposits accumulate in minibasins formed along the canyon path,downstream of the subsiding hanging wall of the growth faults and upstream of shale ridges that damp the flow in the canyon.These results show that canyons can be major targets for sand reservoir exploration on the upper slope of large muddy deltas.展开更多
CHINA Jiaolong Completes 300th Dive Jiaolong,China’s manned deep-sea submersible,on 18 August completed its 300th dive since its maiden mission in August 2009.Jiaolong,with a crew of one scientist and two submariners...CHINA Jiaolong Completes 300th Dive Jiaolong,China’s manned deep-sea submersible,on 18 August completed its 300th dive since its maiden mission in August 2009.Jiaolong,with a crew of one scientist and two submariners,conducted the dive in the Western Pacific Ocean.It was the first of 18 planned dives in an ongoing scientific expedition.展开更多
Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their d...Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their decomposition due to low resistance towards salinity and hence polymer composites have been explored to showcase their mechanical stability to withstand transverse and impact loads.To this end,the mechanical properties of S-Glass/carbon fiber reinforced polymer composite were experimentally investigated and higher specific strength and stiffness of the composite in comparison to many metallic materials used for submarine hull were reported.The obtained experimental values were used for the static and dynamic crash analysis of the bow,stern and foil through Finite Element Analysis(FEA);where depth of travel was varied from sea surface level of 0-7000 m.Submarine assembly was later developed with the optimum shape and thickness of each part.We also report the nonlinear crash analysis upon impact at velocity ranging from 3 to 21 m/s.Besides,kinetic energy,acceleration peak and internal energy in struck submarine revealed that travel depth 1750 m and 3500 m is recommendable,more particularly,crash safety factor of the submarine is found to be within limit when submarine encounters crash at 1750 m.展开更多
The ever-increasing deepwater oil and gas development in the Qiongdongnan Basin,South China Sea has initiated the need to evaluate submarine debris-flow hazard risks to seafloor infrastructures.This paper presents a c...The ever-increasing deepwater oil and gas development in the Qiongdongnan Basin,South China Sea has initiated the need to evaluate submarine debris-flow hazard risks to seafloor infrastructures.This paper presents a case study on evaluating the debris-flow hazard risks to the planned pipeline systems in this region.We used a numerical model to perform simulations to support this quantitative evaluation.First,one relict failure interpreted across the development site was simulated.The back-analysis modeling was used to validate the applicability of the rheological parameters.Then,this model was applied to forecast the runout behaviors of future debris flows originating from the unstable upslope regions considered to be the most critical to the pipeline systems surrounding the Manifolds A and B.The model results showed that the potential debris-flow hazard risks rely on the location of structures and the selection of rheological parameters.For the Manifold B and connected pipeline systems,because of their remote distances away from unstable canyon flanks,the potential debris flows impose few risks.However,the pipeline systems around the Manifold A are exposed to significant hazard risks from future debris flows with selected rheological parameters.These results are beneficial for the design of a more resilient pipeline route in consideration of future debris-flow hazard risks.展开更多
Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyze...Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyzed the characteristics of submarine volcanoes and identified a total of 43 submarine volcanoes in the southern margin of the SCS,based on a newly acquired 310-km seismic reflection profile,along with previous 45 multi-channel seismic(MCS)profiles,petrological results from volcanic rocks sampled by dredging and drilling,nearby ocean bottom seismometer(OBS)wide-angle seismic profiles,and gravity and magnetic data.The study ascertains that most of these volcanoes are located in fault-block belts and graben-horst zones with strong crustal stretching and thinning.These volcanoes exhibit positive high-amplitude external seismic reflections,weak and chaotic internal seismic reflections,and are accompanied by local deformation of the surrounding sedimentary strata.Meanwhile,they have higher positive gravity anomalies and higher magnetic anomalies than the background strata.The petrological dating results show that volcanic ages are primarily in the Pliocene-Pleistocene,with geochemical characteristics indicating dominance of oceanic island basalt(OIB)-type alkali-basalts.Extensional faults have obviously spatial correspondence with post-spreading volcanism,suggesting these faults may provide conduits for submarine volcanism.The high-velocity bodies(HVBs)in the lower crust and magma underplating exist in the southern SCS,which could provide a clue of genesis for submarine volcanism.The inference is that the intensity of post-spreading volcanism in the southern margin might be affected by stretching faults,crustal thinning and magma underplating.展开更多
The instability of continental slopes damages marine engineering equipment,such as submarine pipelines,resulting in the generation of tsunamis,which endangers the safety of nearshore personnel.Therefore,research on th...The instability of continental slopes damages marine engineering equipment,such as submarine pipelines,resulting in the generation of tsunamis,which endangers the safety of nearshore personnel.Therefore,research on the instability of continental slopes where submarine landslides usually occur is crucial to the risk evaluation of deepwater drilling.Previous studies were mainly based on simplified 2D and 3D models,which extend the 2D model applied on submarine slopes with complex topography.In this study,a numerical model with bathymetric data from the Qiongdongnan Basin was established.Furthermore,3D slope stability analysis and static and dynamic analyses were conducted.The static analysis found two discussions where slopes are most likely to occur.Through the analysis of different seismic forces,the dynamic result showed that an instability area is added to the two positions where the static analysis is unstable.Topography scatters and transmits seismic waves and controls the accumulation and diffusion of seismic energy.3D calculations and analysis revealed that the direction of slope instability is closely related to terrain inclination,slope,terrain effect,and terrain curvature.Data showed that instability situations could not be derived from a single direction or profile data.Such situations are an important factor in slope stability analysis and are critical to the prediction and evaluation of marine geological disasters.展开更多
A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendic...A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendicular to the orientation of another well-known,large,and nearly coeval submarine channel in this area.Based on the interpretation of high-resolution 3D seismic data,this study describes and analyzes the stratigraphy,tectonics,sedimentation,morphology,structure and evolution of HGC by means of well-seismic synthetic calibration,one-and two-dimensional forward modeling,attribute interpretation,tectonic interpretation,and gas detection.The HGC is located on the downthrown side of an earlier activated normal fault and grew northwestward along the fault strike.The channel is part of a slope that extends from the western Huaguang Sag to the eastern Beijiao Uplift.The HGC underwent four developmental stages:the(1)incubation(late Sanya Formation,20.4–15.5 Ma),(2)embryonic(Meishan Formation,15.5–10.5 Ma),(3)peak(Huangliu Formation,10.5–5.5 Ma)and(4)decline(Yinggehai Formation,5.5–1.9 Ma)stages.The channel sandstones have a provenance from the southern Yongle Uplift and filled the channel via multistage vertical amalgamation and lateral migration.The channel extended 42.5 km in an approximately straight pattern in the peak stage.At 10.5 Ma,sea level fell relative to its lowest level,and three oblique progradation turbidite sand bodies filled the channel from south to north.A channel sandstone isopach map demonstrated a narrow distribution in the early stages and a fan-shaped distribution in the late stage.The formation and evolution of the HGC were controlled mainly by background tectonics,fault strike,relative sea level change,and mass supply from the Yongle Uplift.The HGC sandstone reservoir is near the Huaguangjiao Sag,where hydrocarbons were generated.Channel-bounding faults and underlying faults link the source rock with the reservoir.A regionally extensive mudstone caprock overlies the channel sandstone.Two traps likely containing gas were recognized in a structural high upstream of the channel from seismic attenuation anomalies.The HGC will likely become an important oil and gas accumulation setting in the QDNB deep-water area.展开更多
There are many large-scale Cenozoic sedimentary basins with plentiful river deltas,deep-water fans and carbonate platforms in the southern South China Sea.The Crocker Fan was deposited as a typical submarine fan durin...There are many large-scale Cenozoic sedimentary basins with plentiful river deltas,deep-water fans and carbonate platforms in the southern South China Sea.The Crocker Fan was deposited as a typical submarine fan during the late Eocene–early Miocene,and stretches extensively across the entire Sarawak–Sabah of the northern Borneo area.However,systematic analyses are still lacking regarding its sediment composition and potential source suppliers.No consensus has been reached yet on the provenance evolution and sedimentary infilling processes,which seriously impeded the oil-and-gas exploration undertakings.By combining with sedimentaryfacies identification,heavy mineral assemblages,elemental geochemistry and detrital zircon U-Pb dating,this paper aims to generalize an integrated analysis on the potential provenance terranes and restore source-to-sink pathways of the Crocker Fan.In general,the Crocker Fan was initially formed over the Cretaceous–lower/middle Eocene Rajang Group by an angular Rajang unconformity.The continual southward subduction of the protoSouth China Sea resulted in magmatic activities and subsequent regional deformation and thrusting along the Lupar Line in the northern Borneo.The lowermost Crocker sequence is featured by a thick conglomerate layer sourced from in-situ or adjacent paleo-uplifts.From the late Eocene to the early Miocene,the Crocker Fan was constantly delivered with voluminous detritus from the Malay Peninsula of the western Sundaland.The Zengmu Basin was widely deposited with delta plain and neritic facies sediments,while the Brunei-Sabah Basin,to the farther east,was ubiquitously characterized by turbiditic sequences.The Crocker Fan successions are overall thick layers of modest-grained sandstones,which formed high-quality reservoirs in the southern South China Sea region.展开更多
The devastating 2004 tsunamis that hit the southwestern coast of Thailand pose a serious threat to people along the coastal zone. A major aim for the tsunami hazard prediction is better prediction of the next tsunamis...The devastating 2004 tsunamis that hit the southwestern coast of Thailand pose a serious threat to people along the coastal zone. A major aim for the tsunami hazard prediction is better prediction of the next tsunamis and their impacts. In this paper, we present the first implications of recent slope failure events of the Andaman outer shelf and upper slope based on a new detailed bathymetric data and subbottom profiler records acquired during two cruises of the MASS project in 2006 and 2007. Morphometric analysis reveals a variety of anomalous features,including: three large plateaus surrounded by moats, ruggedness and unevenness of slope morphology, and two translational submarine landslides. Two submarine landslides are studied from the detailed bathymetric data and subbottom profiler record covering the upper slope of the Andaman Sea shelf break within Thai exclusive economic zone. Maximum approximated volumes of both displaced masses are 4.8×10~7 m~3 and 2.2×10~7 m~3.Considering the data, there is no evidence that landslides have been the sources for tsunami hazard potential in recent geological time. These prerequisites will allow better study of slope failure events in the area. Further investigation is required to better understand obvious geotectonic phenomena.展开更多
Submarine canyon-channel systems have been documented in the Parece Vela Basin,West Mariana Ridge;however,the mechanism of the formation and controlling factors remain poorly understood.Based on high-resolution multib...Submarine canyon-channel systems have been documented in the Parece Vela Basin,West Mariana Ridge;however,the mechanism of the formation and controlling factors remain poorly understood.Based on high-resolution multibeam bathymetric data and two-dimensional(2D)seismic profiles,we identified and mapped the submarine canyon-channel system along the middle segment of West Mariana Ridge in the Philippine Sea.These submarine canyon-channels show a main W-E orientation at depth of 2000–4500 m.They are approximately 72–128 km in length and 1.3–15 km in width,and their canyon heads are adjacent to the seamounts with several branches.The upper reaches of submarine canyon-channels are characterized by deeply incised,narrow,V-shaped thalwegs,suggesting the powerful erosion of gravity flows.The distinguished sediment waves are suggested to be resulted from the interaction of turbidity currents and seafloor.Our observations demonstrate that gravity flows originated from the collapses of seamount flanks plays a vital role in developing the submarine canyonchannel system along the West Mariana Ridge.This work provides better understanding of erosion,transport,and deposition of sediments from subducting ridges to deep-water basins,and also new insights into the origin and evolution of submarine canyon-channel systems along subducting ridges.展开更多
Because non-buried submarine pipelines under cyclic thermal loading are prone to global buckling,sleepers are commonly laid along the pipeline route to induce a series of relatively small and controllable lateral buck...Because non-buried submarine pipelines under cyclic thermal loading are prone to global buckling,sleepers are commonly laid along the pipeline route to induce a series of relatively small and controllable lateral buckling.A finite element model which can simulate the transformation of pipeline laid on a sleeper from vertical buckling to lateral buckling is established in this work.The parameters of sleeper affecting pipeline buckling modes are analysed,and a new kind of sleeper is proposed aimed at avoiding antisymmetric buckling.Results show that the lateral trigger force can avoid antisymmetric lateral buckling when acting between 1℃and 13℃before the critical buckling temperature.The range increases slightly with increasing trigger force.Compared with an ordinary sleeper,the proposed new sleeper with slider can reduce the critical buckling temperature by 25%,which significantly improves the success rate of sleepers.展开更多
Subterranean estuaries(STE)are important seawater-groundwater mixing zones with complex biogeochemical processes,which play a vital role in the migration and transformation of dissolved materials.In this study,we firs...Subterranean estuaries(STE)are important seawater-groundwater mixing zones with complex biogeochemical processes,which play a vital role in the migration and transformation of dissolved materials.In this study,we first investigated the spatial distributions of dissolved inorganic nitrogen(DIN),dissolved inorganic phosphorous(DIP),dissolved inorganic silicon(DSi)and metal elements(As,Ba,Cr,Cu,Fe,Mn,Ni,Pb,and Zn)in STE including upper intertidal,seepage face and subtidal zones.We then estimated submarine groundwater discharge(SGD)and associated nutrient and metal element fluxes.From the generalized Darcy’s law method,SGD was estimated to be 30.13 cm/d,which was about 7 times larger than the inflow(4.16 cm/d).The nutrient and metal fluxes from SGD were estimated to be(5.33±4.99)mmol/(m^(2)·d)for DIN,(0.22±0.03)mmol/(m^(2)·d)for DIP,(16.20±2.05)mmol/(m^(2)·d)for DSi,(1325.06±99.10)μmol/(m^(2)·d)for Fe,(143.41±25.13)μmol/(m^(2)·d)for Mn,(304.06±81.07)μmol/(m^(2)·d)for Zn,(140.21±13.33)μmol/(m^(2)·d)for Cu,(84.49±2.94)μmol/(m^(2)·d)for Pb,(37.38±5.51)μmol/(m^(2)·d)for Ba,(27.88±3.89)μmol/(m^(2)·d)for Cr,(10.10±6.33)μmol/(m^(2)·d)for Ni,and(6.25±3.45)μmol/(m^(2)·d)for As.The nutrient and metal fluxes from SGD were relatively higher than those from the inflow,suggesting that nearshore groundwater acted as the sources of nutrients and metal elements discharging into the sea.The environmental potential pollution of coastal seawater was evaluated by pollution factor index(Pi),comprehensive water quality index(CWQI),and ecological risk index(ERI).Pb mainly caused potential danger of nearshore environment with considerable contamination(Pi=5.78±0.19),heavy pollution(CWQI=4.09)and high ecological risk(ERI=18.00).This study contributed to better understanding the behavior of nutrients and metal elements and improving the sustainable management of STE under the pressure of anthropogenic activities and climate change.展开更多
In offshore engineering, the phenomenon of free span often occurs, and the pipeline may have multiple free spans adjacent to each other, forming a multi-span pipeline. The interaction of different spans makes the stru...In offshore engineering, the phenomenon of free span often occurs, and the pipeline may have multiple free spans adjacent to each other, forming a multi-span pipeline. The interaction of different spans makes the structural vibration characteristics more complex, which may change the fatigue characteristics of the pipeline and affect the safety of the structure. In this paper, model tests were designed to explore the vortex-induced vibration(VIV) characteristics of multi-span pipelines and investigate the multi-span interaction mechanism. The experimental study mainly focused on the dynamic response of double-span pipelines, and further extended to triple-span pipelines, hoping that the results can be applied to more complex environment. The effects of span-length ratio, buried depth and axial force on VIV of the pipeline were investigated and discussed. The dynamic response of the pipeline varied with the span length. There was obvious interaction between different spans of multi-span pipelines, and the pipe-sediment interaction obviously affected the vibration characteristics of pipeline. The differences of pipeline burial depth and axial force changed the structural stiffness. With the increase of buried depth, the response amplitude presented a downward trend. The spanwise evolutions were asymmetric caused by the pipe-sediment interaction and multi-span interaction. The results can help to identify multi-span pipelines in engineering, and realize the prevention and control of free spans.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12072217 and 42077254)the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30567).
文摘The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework.
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210527National Natural Science Foundation of China,Grant/Award Number:42107158Training Program for Innovation and Entrepreneurship,China University of Mining and Technology。
文摘In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
文摘The Qom Formation is the most important hydrocarbon reservoir target in Central Iran.The Qom platform developed in a back-arc basin during the Oligo-Miocene due to the closing of the Tethyan Seaway.This formation consists of a variety of carbonate and non-carbonate facies deposited on a platform ranging from supratidal to basin.A combination of tectonic and eustatic events led to some lateral and vertical facies variations in the study area.Six third-order depositional sequences and related surfaces were identified regarding vertical facies changes in the studied sections of this Oligo-Miocene succession.According to all results and data,this succession was initially deposited during the Chattian upon a distally steepened ramp of siliciclastic-carbonate composition,including the Bouma sequence.Then,from the late Chattian to the Aquitanian,the platform changed into a homoclinal carbonate ramp with a gentle profile.With respect to tectonic activity,this phase was a calm period during the deposition of the Qom Formation.Finally,a drowned carbonate platform and a rimmed shelf emerged during the Burdigalian,terminated by the continental deposits of the Upper Red Formation.Regarding all geological characteristics,three main tectono-eustatic evolutionary phases have been recognized in the Qom back-arcbasin.
基金The study is funded by the Cooperation Project of China National Petroleum Company(CNPC)and China University of Petroleum-Beijing(CUPB)(No.RIPED-2021-JS-552)the National Natural Science Foundation of China(Nos.42002112,42272110)+2 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the Science Foundation for Youth Scholars of CUPB(No.24620222BJRC006)We thank the China Scholarship Council(CSC)(No.202106440048)for having funded the research stay of Mei Chen at MARUM,University of Bremen.We thank Elda Miramontes for her constructive comments and suggestions that helped us improve our manuscript.
文摘Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.
基金financially supported by the National Natural Science Foundation of China(Grant No.52171285)。
文摘A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline.
基金The National Natural Science Foundation of China under contract No.42372154。
文摘Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.
基金supported by the Petroleum Technology Develop-ment Fund,Nigeria,TotalEnergies Exploration and Production department,France,and the Society of Exploration Geophysicists。
文摘High-resolution 3D seismic data analysis was integrated with a calibrated well and biostratigraphy data to present the first overview of a buried Pleistocene canyon system on the upper slope of the eastern Niger Delta,the Galabor Canyon.Attribute maps of specific horizons allow documenting the changing morphologies and infill lithologies of two main branches of the canyon through two stages of activity separated by a reference horizon dated at 0.99 Ma based on well calibration.At the upper slope,growth faults dissect the canyon heads,the catchment of which encroaches a network of valleys incised on the outer shelf.The canyon fill is composed of muddy channels and mass-transport deposits,largely derived from the collapse of canyon walls and sand-rich bodies forming a tract sourced by shelf-edge deltas at the outlet of the incised valleys.High-density turbiditic processes likely control the distribution of sand bodies along the canyon,ranging from tributary fans on the upper slope to 6 km-wide meander belts on the middle slope.The sandy deposits accumulate in minibasins formed along the canyon path,downstream of the subsiding hanging wall of the growth faults and upstream of shale ridges that damp the flow in the canyon.These results show that canyons can be major targets for sand reservoir exploration on the upper slope of large muddy deltas.
文摘CHINA Jiaolong Completes 300th Dive Jiaolong,China’s manned deep-sea submersible,on 18 August completed its 300th dive since its maiden mission in August 2009.Jiaolong,with a crew of one scientist and two submariners,conducted the dive in the Western Pacific Ocean.It was the first of 18 planned dives in an ongoing scientific expedition.
文摘Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their decomposition due to low resistance towards salinity and hence polymer composites have been explored to showcase their mechanical stability to withstand transverse and impact loads.To this end,the mechanical properties of S-Glass/carbon fiber reinforced polymer composite were experimentally investigated and higher specific strength and stiffness of the composite in comparison to many metallic materials used for submarine hull were reported.The obtained experimental values were used for the static and dynamic crash analysis of the bow,stern and foil through Finite Element Analysis(FEA);where depth of travel was varied from sea surface level of 0-7000 m.Submarine assembly was later developed with the optimum shape and thickness of each part.We also report the nonlinear crash analysis upon impact at velocity ranging from 3 to 21 m/s.Besides,kinetic energy,acceleration peak and internal energy in struck submarine revealed that travel depth 1750 m and 3500 m is recommendable,more particularly,crash safety factor of the submarine is found to be within limit when submarine encounters crash at 1750 m.
基金The National Natural Science Foundation of China under contract Nos 42106198 and 41720104001the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0210.
文摘The ever-increasing deepwater oil and gas development in the Qiongdongnan Basin,South China Sea has initiated the need to evaluate submarine debris-flow hazard risks to seafloor infrastructures.This paper presents a case study on evaluating the debris-flow hazard risks to the planned pipeline systems in this region.We used a numerical model to perform simulations to support this quantitative evaluation.First,one relict failure interpreted across the development site was simulated.The back-analysis modeling was used to validate the applicability of the rheological parameters.Then,this model was applied to forecast the runout behaviors of future debris flows originating from the unstable upslope regions considered to be the most critical to the pipeline systems surrounding the Manifolds A and B.The model results showed that the potential debris-flow hazard risks rely on the location of structures and the selection of rheological parameters.For the Manifold B and connected pipeline systems,because of their remote distances away from unstable canyon flanks,the potential debris flows impose few risks.However,the pipeline systems around the Manifold A are exposed to significant hazard risks from future debris flows with selected rheological parameters.These results are beneficial for the design of a more resilient pipeline route in consideration of future debris-flow hazard risks.
基金Supported by the National Key Research and Development Program of China(No.2022YFC3102200)the Guangdong Research Foundation(No.2019BT02H594)+3 种基金the National Natural Science Foundation of China(No.42076071)the Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0204)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA22020303)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-XH-2021-2-02)。
文摘Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyzed the characteristics of submarine volcanoes and identified a total of 43 submarine volcanoes in the southern margin of the SCS,based on a newly acquired 310-km seismic reflection profile,along with previous 45 multi-channel seismic(MCS)profiles,petrological results from volcanic rocks sampled by dredging and drilling,nearby ocean bottom seismometer(OBS)wide-angle seismic profiles,and gravity and magnetic data.The study ascertains that most of these volcanoes are located in fault-block belts and graben-horst zones with strong crustal stretching and thinning.These volcanoes exhibit positive high-amplitude external seismic reflections,weak and chaotic internal seismic reflections,and are accompanied by local deformation of the surrounding sedimentary strata.Meanwhile,they have higher positive gravity anomalies and higher magnetic anomalies than the background strata.The petrological dating results show that volcanic ages are primarily in the Pliocene-Pleistocene,with geochemical characteristics indicating dominance of oceanic island basalt(OIB)-type alkali-basalts.Extensional faults have obviously spatial correspondence with post-spreading volcanism,suggesting these faults may provide conduits for submarine volcanism.The high-velocity bodies(HVBs)in the lower crust and magma underplating exist in the southern SCS,which could provide a clue of genesis for submarine volcanism.The inference is that the intensity of post-spreading volcanism in the southern margin might be affected by stretching faults,crustal thinning and magma underplating.
基金This study was supported by the National Key Research and Development Program of China(No.2019YFC0312301)the Nation Natural Science Foundation of China(No.U1701245).
文摘The instability of continental slopes damages marine engineering equipment,such as submarine pipelines,resulting in the generation of tsunamis,which endangers the safety of nearshore personnel.Therefore,research on the instability of continental slopes where submarine landslides usually occur is crucial to the risk evaluation of deepwater drilling.Previous studies were mainly based on simplified 2D and 3D models,which extend the 2D model applied on submarine slopes with complex topography.In this study,a numerical model with bathymetric data from the Qiongdongnan Basin was established.Furthermore,3D slope stability analysis and static and dynamic analyses were conducted.The static analysis found two discussions where slopes are most likely to occur.Through the analysis of different seismic forces,the dynamic result showed that an instability area is added to the two positions where the static analysis is unstable.Topography scatters and transmits seismic waves and controls the accumulation and diffusion of seismic energy.3D calculations and analysis revealed that the direction of slope instability is closely related to terrain inclination,slope,terrain effect,and terrain curvature.Data showed that instability situations could not be derived from a single direction or profile data.Such situations are an important factor in slope stability analysis and are critical to the prediction and evaluation of marine geological disasters.
基金The National Natural Science Foundation of China’s Major Project “Research on Geophysical Theories and Methods of Unconventional Oil and Gas Exploration and Development”, Task Ⅰ: “China’s Tight Oil and Gas Reservoir Geological Characteristics, Classification and Typical Geological Model Establishment” under contract No. 41390451the Science and Technology Project of Sinopec Shanghai Offshore Petroleum Company under contract No. KJ-2021-7
文摘A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendicular to the orientation of another well-known,large,and nearly coeval submarine channel in this area.Based on the interpretation of high-resolution 3D seismic data,this study describes and analyzes the stratigraphy,tectonics,sedimentation,morphology,structure and evolution of HGC by means of well-seismic synthetic calibration,one-and two-dimensional forward modeling,attribute interpretation,tectonic interpretation,and gas detection.The HGC is located on the downthrown side of an earlier activated normal fault and grew northwestward along the fault strike.The channel is part of a slope that extends from the western Huaguang Sag to the eastern Beijiao Uplift.The HGC underwent four developmental stages:the(1)incubation(late Sanya Formation,20.4–15.5 Ma),(2)embryonic(Meishan Formation,15.5–10.5 Ma),(3)peak(Huangliu Formation,10.5–5.5 Ma)and(4)decline(Yinggehai Formation,5.5–1.9 Ma)stages.The channel sandstones have a provenance from the southern Yongle Uplift and filled the channel via multistage vertical amalgamation and lateral migration.The channel extended 42.5 km in an approximately straight pattern in the peak stage.At 10.5 Ma,sea level fell relative to its lowest level,and three oblique progradation turbidite sand bodies filled the channel from south to north.A channel sandstone isopach map demonstrated a narrow distribution in the early stages and a fan-shaped distribution in the late stage.The formation and evolution of the HGC were controlled mainly by background tectonics,fault strike,relative sea level change,and mass supply from the Yongle Uplift.The HGC sandstone reservoir is near the Huaguangjiao Sag,where hydrocarbons were generated.Channel-bounding faults and underlying faults link the source rock with the reservoir.A regionally extensive mudstone caprock overlies the channel sandstone.Two traps likely containing gas were recognized in a structural high upstream of the channel from seismic attenuation anomalies.The HGC will likely become an important oil and gas accumulation setting in the QDNB deep-water area.
基金The National Natural Science Foundation of China under contract Nos 42076066,92055203 and U20A20100。
文摘There are many large-scale Cenozoic sedimentary basins with plentiful river deltas,deep-water fans and carbonate platforms in the southern South China Sea.The Crocker Fan was deposited as a typical submarine fan during the late Eocene–early Miocene,and stretches extensively across the entire Sarawak–Sabah of the northern Borneo area.However,systematic analyses are still lacking regarding its sediment composition and potential source suppliers.No consensus has been reached yet on the provenance evolution and sedimentary infilling processes,which seriously impeded the oil-and-gas exploration undertakings.By combining with sedimentaryfacies identification,heavy mineral assemblages,elemental geochemistry and detrital zircon U-Pb dating,this paper aims to generalize an integrated analysis on the potential provenance terranes and restore source-to-sink pathways of the Crocker Fan.In general,the Crocker Fan was initially formed over the Cretaceous–lower/middle Eocene Rajang Group by an angular Rajang unconformity.The continual southward subduction of the protoSouth China Sea resulted in magmatic activities and subsequent regional deformation and thrusting along the Lupar Line in the northern Borneo.The lowermost Crocker sequence is featured by a thick conglomerate layer sourced from in-situ or adjacent paleo-uplifts.From the late Eocene to the early Miocene,the Crocker Fan was constantly delivered with voluminous detritus from the Malay Peninsula of the western Sundaland.The Zengmu Basin was widely deposited with delta plain and neritic facies sediments,while the Brunei-Sabah Basin,to the farther east,was ubiquitously characterized by turbiditic sequences.The Crocker Fan successions are overall thick layers of modest-grained sandstones,which formed high-quality reservoirs in the southern South China Sea region.
基金The Financial Support Jointly by the National Research Council of Thailand and the German Research Foundation。
文摘The devastating 2004 tsunamis that hit the southwestern coast of Thailand pose a serious threat to people along the coastal zone. A major aim for the tsunami hazard prediction is better prediction of the next tsunamis and their impacts. In this paper, we present the first implications of recent slope failure events of the Andaman outer shelf and upper slope based on a new detailed bathymetric data and subbottom profiler records acquired during two cruises of the MASS project in 2006 and 2007. Morphometric analysis reveals a variety of anomalous features,including: three large plateaus surrounded by moats, ruggedness and unevenness of slope morphology, and two translational submarine landslides. Two submarine landslides are studied from the detailed bathymetric data and subbottom profiler record covering the upper slope of the Andaman Sea shelf break within Thai exclusive economic zone. Maximum approximated volumes of both displaced masses are 4.8×10~7 m~3 and 2.2×10~7 m~3.Considering the data, there is no evidence that landslides have been the sources for tsunami hazard potential in recent geological time. These prerequisites will allow better study of slope failure events in the area. Further investigation is required to better understand obvious geotectonic phenomena.
基金Supported by the National Natural Science Foundation of China(No.91958211)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42020000)+1 种基金the Laoshan Laboratory Project(No.LSKJ202203503)the Key Deployment Project of Center for Ocean Mega-Research of Science,Chinese Academy of Sciences(No.COMS2019Q10).Dr.Wei LI is funded by the CAS Pioneer Hundred-Talents Program。
文摘Submarine canyon-channel systems have been documented in the Parece Vela Basin,West Mariana Ridge;however,the mechanism of the formation and controlling factors remain poorly understood.Based on high-resolution multibeam bathymetric data and two-dimensional(2D)seismic profiles,we identified and mapped the submarine canyon-channel system along the middle segment of West Mariana Ridge in the Philippine Sea.These submarine canyon-channels show a main W-E orientation at depth of 2000–4500 m.They are approximately 72–128 km in length and 1.3–15 km in width,and their canyon heads are adjacent to the seamounts with several branches.The upper reaches of submarine canyon-channels are characterized by deeply incised,narrow,V-shaped thalwegs,suggesting the powerful erosion of gravity flows.The distinguished sediment waves are suggested to be resulted from the interaction of turbidity currents and seafloor.Our observations demonstrate that gravity flows originated from the collapses of seamount flanks plays a vital role in developing the submarine canyonchannel system along the West Mariana Ridge.This work provides better understanding of erosion,transport,and deposition of sediments from subducting ridges to deep-water basins,and also new insights into the origin and evolution of submarine canyon-channel systems along subducting ridges.
基金financially supported by the National Science Fund for Distinguished Young Scholars of China (Grant No.51825904)。
文摘Because non-buried submarine pipelines under cyclic thermal loading are prone to global buckling,sleepers are commonly laid along the pipeline route to induce a series of relatively small and controllable lateral buckling.A finite element model which can simulate the transformation of pipeline laid on a sleeper from vertical buckling to lateral buckling is established in this work.The parameters of sleeper affecting pipeline buckling modes are analysed,and a new kind of sleeper is proposed aimed at avoiding antisymmetric buckling.Results show that the lateral trigger force can avoid antisymmetric lateral buckling when acting between 1℃and 13℃before the critical buckling temperature.The range increases slightly with increasing trigger force.Compared with an ordinary sleeper,the proposed new sleeper with slider can reduce the critical buckling temperature by 25%,which significantly improves the success rate of sleepers.
基金The National Key R&D Program of China under contract No.2021YFC3200501the National Natural Science Foundation of China under contract Nos 42107055 and 42130703the Fund of Shenzhen Science and Technology Innovation Committee under contract No.20200925174525002.
文摘Subterranean estuaries(STE)are important seawater-groundwater mixing zones with complex biogeochemical processes,which play a vital role in the migration and transformation of dissolved materials.In this study,we first investigated the spatial distributions of dissolved inorganic nitrogen(DIN),dissolved inorganic phosphorous(DIP),dissolved inorganic silicon(DSi)and metal elements(As,Ba,Cr,Cu,Fe,Mn,Ni,Pb,and Zn)in STE including upper intertidal,seepage face and subtidal zones.We then estimated submarine groundwater discharge(SGD)and associated nutrient and metal element fluxes.From the generalized Darcy’s law method,SGD was estimated to be 30.13 cm/d,which was about 7 times larger than the inflow(4.16 cm/d).The nutrient and metal fluxes from SGD were estimated to be(5.33±4.99)mmol/(m^(2)·d)for DIN,(0.22±0.03)mmol/(m^(2)·d)for DIP,(16.20±2.05)mmol/(m^(2)·d)for DSi,(1325.06±99.10)μmol/(m^(2)·d)for Fe,(143.41±25.13)μmol/(m^(2)·d)for Mn,(304.06±81.07)μmol/(m^(2)·d)for Zn,(140.21±13.33)μmol/(m^(2)·d)for Cu,(84.49±2.94)μmol/(m^(2)·d)for Pb,(37.38±5.51)μmol/(m^(2)·d)for Ba,(27.88±3.89)μmol/(m^(2)·d)for Cr,(10.10±6.33)μmol/(m^(2)·d)for Ni,and(6.25±3.45)μmol/(m^(2)·d)for As.The nutrient and metal fluxes from SGD were relatively higher than those from the inflow,suggesting that nearshore groundwater acted as the sources of nutrients and metal elements discharging into the sea.The environmental potential pollution of coastal seawater was evaluated by pollution factor index(Pi),comprehensive water quality index(CWQI),and ecological risk index(ERI).Pb mainly caused potential danger of nearshore environment with considerable contamination(Pi=5.78±0.19),heavy pollution(CWQI=4.09)and high ecological risk(ERI=18.00).This study contributed to better understanding the behavior of nutrients and metal elements and improving the sustainable management of STE under the pressure of anthropogenic activities and climate change.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51979163 and U2106223)。
文摘In offshore engineering, the phenomenon of free span often occurs, and the pipeline may have multiple free spans adjacent to each other, forming a multi-span pipeline. The interaction of different spans makes the structural vibration characteristics more complex, which may change the fatigue characteristics of the pipeline and affect the safety of the structure. In this paper, model tests were designed to explore the vortex-induced vibration(VIV) characteristics of multi-span pipelines and investigate the multi-span interaction mechanism. The experimental study mainly focused on the dynamic response of double-span pipelines, and further extended to triple-span pipelines, hoping that the results can be applied to more complex environment. The effects of span-length ratio, buried depth and axial force on VIV of the pipeline were investigated and discussed. The dynamic response of the pipeline varied with the span length. There was obvious interaction between different spans of multi-span pipelines, and the pipe-sediment interaction obviously affected the vibration characteristics of pipeline. The differences of pipeline burial depth and axial force changed the structural stiffness. With the increase of buried depth, the response amplitude presented a downward trend. The spanwise evolutions were asymmetric caused by the pipe-sediment interaction and multi-span interaction. The results can help to identify multi-span pipelines in engineering, and realize the prevention and control of free spans.