The nozzle clogging behavior of Ti-bearing IF steel was studied by metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS),and X-ray diffraction(XRD).According to the exper...The nozzle clogging behavior of Ti-bearing IF steel was studied by metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS),and X-ray diffraction(XRD).According to the experimental results,nozzle clogging primarily appears three layers.There are a lot of large-sized iron particles in the inner layer and mainly slag phase in the middle and outer layers.The principal clog constituents of the inner layer are loose alumina cluster inclusions and granular shaped alumina inclusions,containing iron particles. The clog constituents of the middle layer are mainly dendrite alumina inclusions.The primary phases existing in nozzle clogging are FeO·TiO2 and FeO·Al2O3 besidesα-Al2O3 and a-Fe.The FeO·TiO2 phases among the deposits adhere the deposits together firmly enough to lead to the inferior castability of Ti-bearing ultra low carbon steel compared with that of Ti-free low carbon Al-killed steel.展开更多
The influence of submerged entry nozzle clogging on the behavior of molten steel in continuously cast slab molds was studied using commercial code CFX4.3. The results indicate that clogging at the top part of the nozz...The influence of submerged entry nozzle clogging on the behavior of molten steel in continuously cast slab molds was studied using commercial code CFX4.3. The results indicate that clogging at the top part of the nozzle port not only increases the velocity of molten steel, but also enhances the wall shear stress, F number and heat flux. This clogging has the greatest effect on the behavior of molten steel. However, clogging at the top 1/3 of the nozzle only increases the velocity of molten steel and has little influence. Clogging at the bottom of the nozzle almost has no influence.展开更多
A physical model with mercury as analog was developed to investigate the influences of electromagnetic stirring(EMS) on flow field in slab continuous casting when the submerged entry nozzle(SEN) was clogged with d...A physical model with mercury as analog was developed to investigate the influences of electromagnetic stirring(EMS) on flow field in slab continuous casting when the submerged entry nozzle(SEN) was clogged with different clogging rates(0,10% ,25% ,and 50% ). The flow field in mold under different EMS currents(0, 40 A, and 60 A) was measured by an ultrasonic Doppler velocimeter. The results proved that the flow field in the mold was a typical double roll structure under non-clogging SEN. As the SEN clogging rate increased, the flow field structure was transformed from a double roll to asymmetry flow. When the clogging rate reached 50%, the up circulation disappeared on the clogged side. The zone under the meniscus near the narrow face was a non-flowing area. EMS could correct bias flow caused by SEN clogging and improve the symmetry of the flow field during SEN clogging.展开更多
The causes, the formation process, and the prevention of submerged entry nozzle(SEN) clogging were introduced. The influence of electric field on the SEN clogging was focused on, including the basic theory and measure...The causes, the formation process, and the prevention of submerged entry nozzle(SEN) clogging were introduced. The influence of electric field on the SEN clogging was focused on, including the basic theory and measurement of SEN charging,the preliminary research on SEN charging, the influence of molten steel on the wetting behavior of refractory materials in electric field, and the influence of electric field on the oxide inclusions in molten steel. Based on the influence of the hydrodynamics, chemistry and other factors on refractory materials, structure, inclusion particle transfer and adhesion, many anti-clogging researches have been carried out, such as optimizing process conditions, compositing anti-clogging inner lining materials, innovating SEN structure and applying physical fields, which solve the problem of SEN clogging to a certain extent.However, the problems of weak adaptability and superficial study on clogging mechanism are still prominent. The electric field control is a new technology to prevent clogging. Although it has achieved certain results in on-site continuous casting trials,some problems such as the method of applying electric field, the electric field parameters and the equipment still need to be gradually improved, and the surface characteristics of inclusions and SEN materials at high temperatures need to be further studied. It was pointed out that the combination of materials and applied electric field will become an important direction for SEN anti-clogging technology.展开更多
An anchor-shaped geometrical design for a Submerged Entry Nozzle for the slab continuous casting of steel is presented in this work. To evaluate its performance, transient 3D multiphase numerical simulations were carr...An anchor-shaped geometrical design for a Submerged Entry Nozzle for the slab continuous casting of steel is presented in this work. To evaluate its performance, transient 3D multiphase numerical simulations were carried out using the Computational Fluid Dynamics technique. The performance of the proposed nozzle is numerically compared with that of a conventional cylindrical nozzle. Computer results show that the chance of formation of Karman’s vortexes and powder entrapment becomes small for the anchor-shaped SEN.展开更多
The type of inclusions in tundish steel and the formation mechanism of the submerged entry nozzle(SEN)clogging in the continuous casting of the rare earth(RE)high strength steel without calcium treatment were studied ...The type of inclusions in tundish steel and the formation mechanism of the submerged entry nozzle(SEN)clogging in the continuous casting of the rare earth(RE)high strength steel without calcium treatment were studied based on the plant trials and thermodynamic calculation.It was found that Ce_(2)O_(3) and CeAlO_(3) in tundish molten steel were transformed into Ce_(2)O_(2)S+CaO-Al_(2)O_(3) with the size of 2-3 lm during cooling.When the flow velocity of molten steel on surface of the SEN was slow due to the boundary layer effect,Ce_(2)O_(3) inclusion in molten steel reacted with Al_(2)O_(3) in the SEN refractory to form CeAlO3.With the continuous erosion of molten steel and reaction,the compositions of CeAlO_(3),Al_(2)O_(3) and CaO were aggregated,and the clogging layers with different zones were formed on surface of the SEN.Meanwhile,a small amount of molten steel remaining in the arc zone and corner zone of the SEN formed solidified steel.When calcium treatment is canceled,the reaction probability between inclusions in molten steel and refractory should be reduced by improving the material and shape of the SEN.展开更多
In this work, low-density electric current pulse (ECP) has been applied to submerged entry nozzle (SEN) and its effect on the morphology of the inclusion buildup and the distribution of the inclusions in slab has ...In this work, low-density electric current pulse (ECP) has been applied to submerged entry nozzle (SEN) and its effect on the morphology of the inclusion buildup and the distribution of the inclusions in slab has been explored. The results reveal that under the unique effects of ECP, part of small inclusions less than 10 μm is expelled through the boundary layer along the current direction to form dense inclusion buildup. This method is of great potential to prolong the service life of SEN and improve the quality of the steel product.展开更多
In recent years, thin slab continuous casting technology has been widely used to improve the quality of the product and to reduce the cost. One of the challenges faced by this technology is to design reasonable flow p...In recent years, thin slab continuous casting technology has been widely used to improve the quality of the product and to reduce the cost. One of the challenges faced by this technology is to design reasonable flow patterns, which strongly affect the surface and inner properties of the final slab in the mold. With the fixed scales and complex geometrical structures of nozzle and funnel type mold, a series of numerical simulations are made to analyze the flow patterns in melt steel using finite volume method based on structured body fitted coordinate grids. The CFD (computational fluid dynamics) package is validated first using one typical case described in previously published studies, and then it is developed to study the effect of operational parameters on fluid flow in thin slab caster. Two operational parameters, casting speed and SEN (submerged entry nozzle) depth, are mainly considered for numerical analysis. On the basis of present simulations, the reasonable SEN submergence depths corresponding to different casting speeds are suggested according to fluid flow characteristics like, flow jet impingement on the narrow side of the mold, flow speed of the melt steel beneath the meniscus and the recirculation region. This is the first stage of study on the numerical analysis of the whole thin slab casting process with electromagnetic brake.展开更多
Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.T...Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.The SEN deposit profile was characterized as occurring in three major layers:(1)an eroded refractory layer;(2)an initial adhesive layer comprised an Al_(2)O_(3)-ZrO_(2) composite sub-layer and a dense Al_(2)O_(3)-based deposit sub-layer;and(3)a porous multiphase deposit layer mainly consisting of MgO·Al_(2)O_(3),CaO-Al_(2)O_(3),and CaO-TiOx.The MgO·Al_(2)O_(3)-rich inclusions did not adhere directly to the eroded refractory but were entrapped during the deposit growth.Results of inclusion characterization in the tundish revealed that the MgO·Al2O3-rich particles present in the tundish served as the primary source of clogging deposits.Furthermore,a novel cavity-induced adhesion model by circular approximation was established to explain the effects of complex inclusion characteristics and refractory material type on adhesion force.A high number of small MgO·Al_(2)O_(3) inclusions were expected to accelerate the buildup of clogging deposits.Improving the modification of MgO·Al_(2)O_(3)-rich inclusions in the size range of 2-4μm by Ca treatment was crucial to minimizing the risk of SEN clogging during the continuous casting of Ti-UPFS steels.展开更多
基金supported by the National Key Technologies R&D Program of China(No.2006BAE03A06)
文摘The nozzle clogging behavior of Ti-bearing IF steel was studied by metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS),and X-ray diffraction(XRD).According to the experimental results,nozzle clogging primarily appears three layers.There are a lot of large-sized iron particles in the inner layer and mainly slag phase in the middle and outer layers.The principal clog constituents of the inner layer are loose alumina cluster inclusions and granular shaped alumina inclusions,containing iron particles. The clog constituents of the middle layer are mainly dendrite alumina inclusions.The primary phases existing in nozzle clogging are FeO·TiO2 and FeO·Al2O3 besidesα-Al2O3 and a-Fe.The FeO·TiO2 phases among the deposits adhere the deposits together firmly enough to lead to the inferior castability of Ti-bearing ultra low carbon steel compared with that of Ti-free low carbon Al-killed steel.
文摘The influence of submerged entry nozzle clogging on the behavior of molten steel in continuously cast slab molds was studied using commercial code CFX4.3. The results indicate that clogging at the top part of the nozzle port not only increases the velocity of molten steel, but also enhances the wall shear stress, F number and heat flux. This clogging has the greatest effect on the behavior of molten steel. However, clogging at the top 1/3 of the nozzle only increases the velocity of molten steel and has little influence. Clogging at the bottom of the nozzle almost has no influence.
文摘A physical model with mercury as analog was developed to investigate the influences of electromagnetic stirring(EMS) on flow field in slab continuous casting when the submerged entry nozzle(SEN) was clogged with different clogging rates(0,10% ,25% ,and 50% ). The flow field in mold under different EMS currents(0, 40 A, and 60 A) was measured by an ultrasonic Doppler velocimeter. The results proved that the flow field in the mold was a typical double roll structure under non-clogging SEN. As the SEN clogging rate increased, the flow field structure was transformed from a double roll to asymmetry flow. When the clogging rate reached 50%, the up circulation disappeared on the clogged side. The zone under the meniscus near the narrow face was a non-flowing area. EMS could correct bias flow caused by SEN clogging and improve the symmetry of the flow field during SEN clogging.
基金financially supported by the National Natural Science Foundation of China(51932008 and 51772277)Zhongyuan Science and Technology Innovation Leader(204200510011)
文摘The causes, the formation process, and the prevention of submerged entry nozzle(SEN) clogging were introduced. The influence of electric field on the SEN clogging was focused on, including the basic theory and measurement of SEN charging,the preliminary research on SEN charging, the influence of molten steel on the wetting behavior of refractory materials in electric field, and the influence of electric field on the oxide inclusions in molten steel. Based on the influence of the hydrodynamics, chemistry and other factors on refractory materials, structure, inclusion particle transfer and adhesion, many anti-clogging researches have been carried out, such as optimizing process conditions, compositing anti-clogging inner lining materials, innovating SEN structure and applying physical fields, which solve the problem of SEN clogging to a certain extent.However, the problems of weak adaptability and superficial study on clogging mechanism are still prominent. The electric field control is a new technology to prevent clogging. Although it has achieved certain results in on-site continuous casting trials,some problems such as the method of applying electric field, the electric field parameters and the equipment still need to be gradually improved, and the surface characteristics of inclusions and SEN materials at high temperatures need to be further studied. It was pointed out that the combination of materials and applied electric field will become an important direction for SEN anti-clogging technology.
文摘An anchor-shaped geometrical design for a Submerged Entry Nozzle for the slab continuous casting of steel is presented in this work. To evaluate its performance, transient 3D multiphase numerical simulations were carried out using the Computational Fluid Dynamics technique. The performance of the proposed nozzle is numerically compared with that of a conventional cylindrical nozzle. Computer results show that the chance of formation of Karman’s vortexes and powder entrapment becomes small for the anchor-shaped SEN.
基金the financial support of the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2020MS0517)Science and Technology Project of Inner Mongolia Autonomous Region of China(No.2020GG0109).
文摘The type of inclusions in tundish steel and the formation mechanism of the submerged entry nozzle(SEN)clogging in the continuous casting of the rare earth(RE)high strength steel without calcium treatment were studied based on the plant trials and thermodynamic calculation.It was found that Ce_(2)O_(3) and CeAlO_(3) in tundish molten steel were transformed into Ce_(2)O_(2)S+CaO-Al_(2)O_(3) with the size of 2-3 lm during cooling.When the flow velocity of molten steel on surface of the SEN was slow due to the boundary layer effect,Ce_(2)O_(3) inclusion in molten steel reacted with Al_(2)O_(3) in the SEN refractory to form CeAlO3.With the continuous erosion of molten steel and reaction,the compositions of CeAlO_(3),Al_(2)O_(3) and CaO were aggregated,and the clogging layers with different zones were formed on surface of the SEN.Meanwhile,a small amount of molten steel remaining in the arc zone and corner zone of the SEN formed solidified steel.When calcium treatment is canceled,the reaction probability between inclusions in molten steel and refractory should be reduced by improving the material and shape of the SEN.
基金financially supported by the National Natural Science Foundation of China(No.51304039)the Fundamental Research Funds for the Central Universities(Nos.N110402008 and N130402021)Meishan Steel Plant Research Fund
文摘In this work, low-density electric current pulse (ECP) has been applied to submerged entry nozzle (SEN) and its effect on the morphology of the inclusion buildup and the distribution of the inclusions in slab has been explored. The results reveal that under the unique effects of ECP, part of small inclusions less than 10 μm is expelled through the boundary layer along the current direction to form dense inclusion buildup. This method is of great potential to prolong the service life of SEN and improve the quality of the steel product.
文摘In recent years, thin slab continuous casting technology has been widely used to improve the quality of the product and to reduce the cost. One of the challenges faced by this technology is to design reasonable flow patterns, which strongly affect the surface and inner properties of the final slab in the mold. With the fixed scales and complex geometrical structures of nozzle and funnel type mold, a series of numerical simulations are made to analyze the flow patterns in melt steel using finite volume method based on structured body fitted coordinate grids. The CFD (computational fluid dynamics) package is validated first using one typical case described in previously published studies, and then it is developed to study the effect of operational parameters on fluid flow in thin slab caster. Two operational parameters, casting speed and SEN (submerged entry nozzle) depth, are mainly considered for numerical analysis. On the basis of present simulations, the reasonable SEN submergence depths corresponding to different casting speeds are suggested according to fluid flow characteristics like, flow jet impingement on the narrow side of the mold, flow speed of the melt steel beneath the meniscus and the recirculation region. This is the first stage of study on the numerical analysis of the whole thin slab casting process with electromagnetic brake.
基金This work was financially supported by the National Natural Science Foundation of China(No.51574026).
文摘Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.The SEN deposit profile was characterized as occurring in three major layers:(1)an eroded refractory layer;(2)an initial adhesive layer comprised an Al_(2)O_(3)-ZrO_(2) composite sub-layer and a dense Al_(2)O_(3)-based deposit sub-layer;and(3)a porous multiphase deposit layer mainly consisting of MgO·Al_(2)O_(3),CaO-Al_(2)O_(3),and CaO-TiOx.The MgO·Al_(2)O_(3)-rich inclusions did not adhere directly to the eroded refractory but were entrapped during the deposit growth.Results of inclusion characterization in the tundish revealed that the MgO·Al2O3-rich particles present in the tundish served as the primary source of clogging deposits.Furthermore,a novel cavity-induced adhesion model by circular approximation was established to explain the effects of complex inclusion characteristics and refractory material type on adhesion force.A high number of small MgO·Al_(2)O_(3) inclusions were expected to accelerate the buildup of clogging deposits.Improving the modification of MgO·Al_(2)O_(3)-rich inclusions in the size range of 2-4μm by Ca treatment was crucial to minimizing the risk of SEN clogging during the continuous casting of Ti-UPFS steels.