Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the...Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.展开更多
The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this p...The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this paper we proposed a diagnostic method for identifying the working condition of the submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump structure, different characteristics in loading and unloading processes of the submersible linear motor were obtained at different working conditions. The characteristic quantities were extracted from operation data of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method was proposed for identifying the working condition of the submersible pumping unit, where the inputs of the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this method were analyzed and validated by the data acquired from an experimental simulation platform. The model proposed had an excellent performance in failure diagnosis of the submersible pumping system. The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.展开更多
The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristi...The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.展开更多
In order to study the influence of the wrap angle relating to the space guide vane of a submersible well pump(250QJ125)on the flow field and pump performance,seven possible configurations have been considered(obtained...In order to study the influence of the wrap angle relating to the space guide vane of a submersible well pump(250QJ125)on the flow field and pump performance,seven possible configurations have been considered(obtained by changing the blade wrap angle while keeping unchanged all the other parameters).Such configurations have been numerically simulated in the framework of a computational model based on the Reynolds time-averaged N-S equations,the RNG k-εturbulence approach and the SIMPLE algorithm.The impact exerted by different wrap angles of the guide vane on the performance of the pump,the internal losses of the guide vane and the flow field distribution in the bladeless area at the guide vane outlet has been assessed via cross-comparison of all these cases.The results show that the wrap angle has a significant influence:the wrap angle with the highest head is different from that with the highest efficiency,and changes in this angle have a more significant effect on the head than efficiency.A moderate raise of the wrap angle can improve the properties of the flow,reduce turbulence losses and enhance the energy conversion rate inside the guide vane.Different wrap angles can also lead to different fluid circulation modes in the bladeless area from guide vane outlet to impeller inlet,while they have a weak influence on the absolute value of the velocity of the fluid entering the impeller.展开更多
Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the li...Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the life and performance of its system. The objective of this study was to experimentally investigate the characteristics of pressure pulsation which were generated at various stages of a multistage electric submersible pump during closed valve operation at different speeds. An electric submersible pump with five stages was selected for conducting experiments. A variable frequency drive( VFD)was used to operate the electric submersible pump at five different speed settings from 40 to 60 Hz. Piezoresistive pressure transducers were mounted at each stage of the electric submersible pump to capture the unsteady pressure signals. At each speed setting,the electric submersible pump was operated at the shut-off condition and the signals of unsteady pressure from all the five stages were captured. A fast fourier transformation( FFT) was carried out on the pressure signals to convert into frequency domain.From the spectra of pressure pulsation signals,the characteristics of pressure pulsation are obtained for each stage and for various speed settings which were then used to understand its variation with speed and stages.展开更多
Injection recovery is an important measure for increasing the oil recovery rate of an oil field. One way is that centrifugal pumps or plunger pumps are used in an injection station to responsible for injection over a ...Injection recovery is an important measure for increasing the oil recovery rate of an oil field. One way is that centrifugal pumps or plunger pumps are used in an injection station to responsible for injection over a large area under the same pressure. This method is ineffective for low-permeability layers. For the oilfields in dispersed distribution in the marginal areas of Daqing, the low water-absorbing section needs an injection with a high delivery pressure and a low discharge capacity; another way is to install the submersible electric pump upside down, but because the submersible electric pump and the motor are underground, it is difficult for installation and maintenance. Introduced in this paper is the development and application of a surface high-pressure injection device with a submersible electric pump. Bysuccessful resolving some problems, such as the axial force of the submersible electric pump, sealing, level regulation of the pump, coaxiality and vibration, the device has the good points of running smoothly, moving easily, installation and maintains quickly and long period of running. This device can effectively solve the injection of the low water-absorbing section and of oilfields in dispersed locations. The recovery rate of oilfields is also enhanced.展开更多
Artificial lift plays an important role in petroleum industry to sustain production flowrate and to extend the lifespan of oil wells. One of the most popular artificial lift methods is Electric Submersible Pumps (ESP)...Artificial lift plays an important role in petroleum industry to sustain production flowrate and to extend the lifespan of oil wells. One of the most popular artificial lift methods is Electric Submersible Pumps (ESP) because it can produce high flowrate even for wells with great depth. Although ESPs are designed to work under extreme conditions such as corrosion, high temperatures and high pressure, their lifespan is much shorter than expected. ESP failures lead to production loss and increase the cost of replacement, because the cost of intervention work for ESP is much higher than for other artificial lift methods, especially for offshore wells. Therefore, the prediction of ESP failures is highly valuable in oil production and contribute</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;"> a lot to the design, construction and operation of oil wells. The contribution of this study is to use 3 machine learning algorithms, which are Decision Tree, Random Forest and Gradient Boosting Machine, to build predictive models for ESP lifespan while using both dynamic and static ESP parameters. The results of these </span><span style="font-family:Verdana;">models were compared to find out the most suitable model for </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">prediction of ESP life cycle. In addition, this study also evaluated the influence factor of various operating param</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ters to forecast the most impact parameters on the duration of ESP. The results of this study can provide a better understanding of ESP behavior so that early actions can be realized to prevent potential ESP failures</span></span></span></span><span style="font-family:Verdana;">.展开更多
The demand for water pumping in urban water supply and irrigation in Bangladesh is significantly influenced by electricity deficits and high diesel costs. To address these challenges, the adoption of solar power for w...The demand for water pumping in urban water supply and irrigation in Bangladesh is significantly influenced by electricity deficits and high diesel costs. To address these challenges, the adoption of solar power for water pumping emerges as a viable alternative to traditional systems reliant on grid power and diesel. In recent years, there has been a growing emphasis on clean and renewable energies, aligning with the environmental and economic priorities of Bangladesh. The agricultural sector, serving as the backbone of the country’s economy, witnesses an escalating demand for water as the population increases. The extraction and transfer of water for agricultural and drinking purposes translate to high-energy consumption. Leveraging the abundant and essentially free solar energy, particularly during the crop growth periods when irrigation is crucial, presents an optimal solution. This study underscores the underutilization of this vital resource in Bangladesh and advocates for the widespread implementation of solar energy conversion programs, specifically in photovoltaic pumping systems. By comparing these systems with conventional diesel pumps, this paper aims to inspire policymakers, statesmen, and industry professionals to integrate green energy into the water sector. The envisioned outcome is a strategic shift towards sustainable development, with a focus on harnessing solar power to pump water for villages and agriculture, thus contributing to economic and environmental sustainability.展开更多
In the last few decades, several monitoring systems integrated with water level detection have been the major research focus. Production boost and its sustainability depend mainly on sustainable water supply, measurin...In the last few decades, several monitoring systems integrated with water level detection have been the major research focus. Production boost and its sustainability depend mainly on sustainable water supply, measuring water level, and avoiding waste of water is an essential task for all stakeholders. Therefore, the aim of this paper is to design and implement a mobile phone-based remote control. This will be applied to control the operation of a submersible motor in a water tank. The water level in the tank is detected and the device remotely turns the motor pump on/off. The design process is accomplished by developing an android application that works on GSM technology to manage the filling of water tank. An AT89C51 microcontroller is used for the desired programming. At the transmitting end, sensor is used for level detection and GSM module is used to send the information to user. According to this information, user controls the on/off operation of the pump. A SIM card is required for its operation and it works on attention (AT) commands. After the design and implementation of the device, the test results showed that all features of the device worked properly, and the device functions exactly as expected. More significantly, the paper has shown that ultrasonic sensors can be used to determine the level of water in a water tank and a GSM module can be used to control a submersible pump. The design and implementation of this device can help to reduce waste of time and power. Ultimately, it avoids water wastage thereby ensuring availability, conservation, and sustainability of water supply.展开更多
During the oil production, in order to monitor the working conditions of an electrical submersible pump (ESP),an electrical current recorder is used to monitor the electric motor current of an ESP. The recorder char...During the oil production, in order to monitor the working conditions of an electrical submersible pump (ESP),an electrical current recorder is used to monitor the electric motor current of an ESP. The recorder charts indicate various working conditions of the ESP. Subtle malfunctions or abnormal problems of the ESP can be detected and further analyzed from various features of these current curves on the recording charts. Presently, these current charts are manually read and analyzed in oil fields. In this paper, a diagnosis expert system is presented for automatically analyzing these current recording charts and identifying the working condition of the ESP. This expert system includes an open knowledge base, which can be updated or enriched according to the identified features of the current curves on the recording charts, and a condition monitoring and failure pattern recognition method, which is called "pick-up method of feature of the recording chart", and can be correctly applied in most cases. It has been shown that this expert system can effectively improve the accuracy and efficiency of failure diagnosis and working condition monitoring of ESPs.展开更多
文摘Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.
文摘The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this paper we proposed a diagnostic method for identifying the working condition of the submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump structure, different characteristics in loading and unloading processes of the submersible linear motor were obtained at different working conditions. The characteristic quantities were extracted from operation data of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method was proposed for identifying the working condition of the submersible pumping unit, where the inputs of the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this method were analyzed and validated by the data acquired from an experimental simulation platform. The model proposed had an excellent performance in failure diagnosis of the submersible pumping system. The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2023M732979 and No.2022TQ0127)the Cooperative Research Project of the Ministry of Education's "Chunhui Program"(Grant No.HZKY20220117)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20220587)the National Natural Science Foundation of China(Grant No.52309112)。
文摘The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.
基金supported by the National Natural Science Foundation of China(No.51469013).
文摘In order to study the influence of the wrap angle relating to the space guide vane of a submersible well pump(250QJ125)on the flow field and pump performance,seven possible configurations have been considered(obtained by changing the blade wrap angle while keeping unchanged all the other parameters).Such configurations have been numerically simulated in the framework of a computational model based on the Reynolds time-averaged N-S equations,the RNG k-εturbulence approach and the SIMPLE algorithm.The impact exerted by different wrap angles of the guide vane on the performance of the pump,the internal losses of the guide vane and the flow field distribution in the bladeless area at the guide vane outlet has been assessed via cross-comparison of all these cases.The results show that the wrap angle has a significant influence:the wrap angle with the highest head is different from that with the highest efficiency,and changes in this angle have a more significant effect on the head than efficiency.A moderate raise of the wrap angle can improve the properties of the flow,reduce turbulence losses and enhance the energy conversion rate inside the guide vane.Different wrap angles can also lead to different fluid circulation modes in the bladeless area from guide vane outlet to impeller inlet,while they have a weak influence on the absolute value of the velocity of the fluid entering the impeller.
文摘Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the life and performance of its system. The objective of this study was to experimentally investigate the characteristics of pressure pulsation which were generated at various stages of a multistage electric submersible pump during closed valve operation at different speeds. An electric submersible pump with five stages was selected for conducting experiments. A variable frequency drive( VFD)was used to operate the electric submersible pump at five different speed settings from 40 to 60 Hz. Piezoresistive pressure transducers were mounted at each stage of the electric submersible pump to capture the unsteady pressure signals. At each speed setting,the electric submersible pump was operated at the shut-off condition and the signals of unsteady pressure from all the five stages were captured. A fast fourier transformation( FFT) was carried out on the pressure signals to convert into frequency domain.From the spectra of pressure pulsation signals,the characteristics of pressure pulsation are obtained for each stage and for various speed settings which were then used to understand its variation with speed and stages.
文摘Injection recovery is an important measure for increasing the oil recovery rate of an oil field. One way is that centrifugal pumps or plunger pumps are used in an injection station to responsible for injection over a large area under the same pressure. This method is ineffective for low-permeability layers. For the oilfields in dispersed distribution in the marginal areas of Daqing, the low water-absorbing section needs an injection with a high delivery pressure and a low discharge capacity; another way is to install the submersible electric pump upside down, but because the submersible electric pump and the motor are underground, it is difficult for installation and maintenance. Introduced in this paper is the development and application of a surface high-pressure injection device with a submersible electric pump. Bysuccessful resolving some problems, such as the axial force of the submersible electric pump, sealing, level regulation of the pump, coaxiality and vibration, the device has the good points of running smoothly, moving easily, installation and maintains quickly and long period of running. This device can effectively solve the injection of the low water-absorbing section and of oilfields in dispersed locations. The recovery rate of oilfields is also enhanced.
文摘Artificial lift plays an important role in petroleum industry to sustain production flowrate and to extend the lifespan of oil wells. One of the most popular artificial lift methods is Electric Submersible Pumps (ESP) because it can produce high flowrate even for wells with great depth. Although ESPs are designed to work under extreme conditions such as corrosion, high temperatures and high pressure, their lifespan is much shorter than expected. ESP failures lead to production loss and increase the cost of replacement, because the cost of intervention work for ESP is much higher than for other artificial lift methods, especially for offshore wells. Therefore, the prediction of ESP failures is highly valuable in oil production and contribute</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;"> a lot to the design, construction and operation of oil wells. The contribution of this study is to use 3 machine learning algorithms, which are Decision Tree, Random Forest and Gradient Boosting Machine, to build predictive models for ESP lifespan while using both dynamic and static ESP parameters. The results of these </span><span style="font-family:Verdana;">models were compared to find out the most suitable model for </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">prediction of ESP life cycle. In addition, this study also evaluated the influence factor of various operating param</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ters to forecast the most impact parameters on the duration of ESP. The results of this study can provide a better understanding of ESP behavior so that early actions can be realized to prevent potential ESP failures</span></span></span></span><span style="font-family:Verdana;">.
文摘The demand for water pumping in urban water supply and irrigation in Bangladesh is significantly influenced by electricity deficits and high diesel costs. To address these challenges, the adoption of solar power for water pumping emerges as a viable alternative to traditional systems reliant on grid power and diesel. In recent years, there has been a growing emphasis on clean and renewable energies, aligning with the environmental and economic priorities of Bangladesh. The agricultural sector, serving as the backbone of the country’s economy, witnesses an escalating demand for water as the population increases. The extraction and transfer of water for agricultural and drinking purposes translate to high-energy consumption. Leveraging the abundant and essentially free solar energy, particularly during the crop growth periods when irrigation is crucial, presents an optimal solution. This study underscores the underutilization of this vital resource in Bangladesh and advocates for the widespread implementation of solar energy conversion programs, specifically in photovoltaic pumping systems. By comparing these systems with conventional diesel pumps, this paper aims to inspire policymakers, statesmen, and industry professionals to integrate green energy into the water sector. The envisioned outcome is a strategic shift towards sustainable development, with a focus on harnessing solar power to pump water for villages and agriculture, thus contributing to economic and environmental sustainability.
文摘In the last few decades, several monitoring systems integrated with water level detection have been the major research focus. Production boost and its sustainability depend mainly on sustainable water supply, measuring water level, and avoiding waste of water is an essential task for all stakeholders. Therefore, the aim of this paper is to design and implement a mobile phone-based remote control. This will be applied to control the operation of a submersible motor in a water tank. The water level in the tank is detected and the device remotely turns the motor pump on/off. The design process is accomplished by developing an android application that works on GSM technology to manage the filling of water tank. An AT89C51 microcontroller is used for the desired programming. At the transmitting end, sensor is used for level detection and GSM module is used to send the information to user. According to this information, user controls the on/off operation of the pump. A SIM card is required for its operation and it works on attention (AT) commands. After the design and implementation of the device, the test results showed that all features of the device worked properly, and the device functions exactly as expected. More significantly, the paper has shown that ultrasonic sensors can be used to determine the level of water in a water tank and a GSM module can be used to control a submersible pump. The design and implementation of this device can help to reduce waste of time and power. Ultimately, it avoids water wastage thereby ensuring availability, conservation, and sustainability of water supply.
文摘During the oil production, in order to monitor the working conditions of an electrical submersible pump (ESP),an electrical current recorder is used to monitor the electric motor current of an ESP. The recorder charts indicate various working conditions of the ESP. Subtle malfunctions or abnormal problems of the ESP can be detected and further analyzed from various features of these current curves on the recording charts. Presently, these current charts are manually read and analyzed in oil fields. In this paper, a diagnosis expert system is presented for automatically analyzing these current recording charts and identifying the working condition of the ESP. This expert system includes an open knowledge base, which can be updated or enriched according to the identified features of the current curves on the recording charts, and a condition monitoring and failure pattern recognition method, which is called "pick-up method of feature of the recording chart", and can be correctly applied in most cases. It has been shown that this expert system can effectively improve the accuracy and efficiency of failure diagnosis and working condition monitoring of ESPs.