期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism
1
作者 Yanliang Zhou Qianjin Sai +6 位作者 Zhenni Tan Congying Wang Xiuyun Wang Bingyu Lin Jun Ni Jianxin Lin Lilong Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期177-184,共8页
The industrial manufacture of ammonia(NH_(3))using Fe-based catalyst works under rigorous conditions.For the goal of carbon-neutrality,it is highly desired to develop advanced catalyst for NH_(3)synthesis at mild cond... The industrial manufacture of ammonia(NH_(3))using Fe-based catalyst works under rigorous conditions.For the goal of carbon-neutrality,it is highly desired to develop advanced catalyst for NH_(3)synthesis at mild conditions to reduce energy consumption and CO_(2)emissions.However,the main challenge of NH_(3)synthesis at mild conditions lies in the dissociation of steady N≡N triple bond.In this work,we report the design of subnanometer Ru clusters(0.8 nm)anchored on the hollow N-doped carbon spheres catalyst(Ru-SNCs),which effectively promotes the NH_(3)synthesis at mild conditions via an associative route.The NH_(3)synthesis rate over Ru-SNCs(0.49%(mass)Ru)reaches up to 11.7 mmol NH_(3)·(g cat)^(-1)·h^(-1) at 400℃ and 3 MPa,which is superior to that of 8.3 mmol NH_(3)·(g cat)^(-1)·h^(-1) over Ru nanoparticle catalyst(1.20%(mass)Ru).Various characterizations show that the N_(2)H_(4)species are the main intermediates for NH_(3)synthesis on Ru-SNCs catalyst.It demonstrates that Ru-SNCs catalyst can follow an associative route for N_(2)activation,which circumvents the direct dissociation of N_(2)and results in highly efficient NH_(3)synthesis at mild conditions. 展开更多
关键词 Ammonia synthesis Sustainability subnanometer Ru clusters Associative route CATALYSIS
下载PDF
1D/2D composite subnanometer channels for ion transport:The role of confined water
2
作者 Yuhao Li Xiaorui Jin +8 位作者 Xinhai Yan Xinyu Ai Xin Yang Zi-Jian Zheng Kun Huang Gaofeng Zhao Yongan Yang Meiling Wu Kai-Ge Zhou 《Nano Research》 SCIE EI CSCD 2023年第8期10913-10921,共9页
As a mass transport media,water is an alternative of organic solvent applied in rechargeable batteries,due to its unique properties,including fast ionic migration,easy-processibility,economic/environmental friendlines... As a mass transport media,water is an alternative of organic solvent applied in rechargeable batteries,due to its unique properties,including fast ionic migration,easy-processibility,economic/environmental friendliness,and flame retardancy.However,due to the high activity of water molecules in aqueous electrolytes,the corrosion of metal anode,side reactions,and inferior metal electrodeposition behavior leads to unstable cycling performance,poor Coulombic efficiency(CE),and early-staged failure of batteries.Despite several attempts to regulate the activity of water,migration of ions is sacrificed,due to the limited methods to control the water states.Herein,we developed a subnanoscale confinement strategy based on a nacre-like structure to modulate the activity of water in the solid electrolytes.By tuning the ratio between the two-dimensional(2D)vermiculite and one-dimensional(1D)cellulose nanofibers(CNFs),the capillary size in the 1D/2D structure is altered to achieve a fast Zn^(2+)transport.Our dielectric relaxation and molecular dynamics studies indicate that the enhanced Zn^(2+)conductivity is attributed to the fast water relaxation in the precisely defined 1D/2D capillary.Taking advantage of the regulated activity of the confined water in 2D capillary,the composite vermiculite membrane can suppress the corrosion and side reactions between Zn electrode and water molecular,endowing a reversible Zn^(2+)stripping/plating behavior and a stable cycling performance for 900 h.Based on our confinement strategy to control the water states by 1D/2D structures,this work will open an avenue toward aqueous energy storage devices with excellent reversibility,high safety,and long-term stability. 展开更多
关键词 ion transport subnanometer channels confined water aqueous electrolyte limited side reactions
原文传递
Versatile Organogels of Aluminum Oxide Subnanosheets for Locking Solvents and Adhesion
3
作者 Wanyue Ouyang Xun Wang 《Precision Chemistry》 2024年第1期21-27,共7页
Herein,we present a facile strategy to prepare versatile aluminum oxide subnanometer nanosheets with oleic acid and stearic acid ligands(OA-Al SNSs and SA-Al SNSs,respectively).The size effect endows subnanosheets wit... Herein,we present a facile strategy to prepare versatile aluminum oxide subnanometer nanosheets with oleic acid and stearic acid ligands(OA-Al SNSs and SA-Al SNSs,respectively).The size effect endows subnanosheets with abundant acting sites,remarkable intermolecular interactions,and unique polymer-like properties,including flexibility,viscoelasticity,and sol-gel transitions,which is quite different from traditional inorganic materials.Consequently,subnanosheets could form freestanding organogels and OA-Al SNSs exhibit satisfying semisolidification of various solvents,making it an intriguing candidate for the safe storage and transportation of solvents.Furthermore,SA-Al SNSs exhibit excellent adhesive properties of high strength on diverse substrates,and it is easy to erase it without any damage,demonstrating the promising prospects in practical applications. 展开更多
关键词 subnanometer NANOMATERIALS self-assembly polymer-analogue ORGANOGEL adhesive
原文传递
Cage Clusters: from Structure Prediction to Rational Design of Functional Nanomaterials 被引量:2
4
作者 ZHOU Si ZHAO Yan-Yan ZHAO Ji-Jun 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2020年第7期1185-1193,共9页
Atomic clusters of subnanometer scale and variable chemical composition offer great opportunities for rational design of functional nanomaterials.Among them,cage clusters doped with endohedral atom are particularly in... Atomic clusters of subnanometer scale and variable chemical composition offer great opportunities for rational design of functional nanomaterials.Among them,cage clusters doped with endohedral atom are particularly interesting owing to their enhanced stability and highly tunable physical and chemical properties.In this perspective,first we give a brief overview of the history of doped cage clusters and introduce the home-developed comprehensive genetic algorithm(CGA)for structure prediction of clusters.Then,we show a few examples of magnetic clusters and subnanometer catalysts based on doped cage clusters,which are computationally revealed or designed by the CGA code.Finally,we give an outlook for some future directions of cluster science. 展开更多
关键词 CLUSTER genetic algorithm MAGNETISM subnanometer catalysts
原文传递
Can lanthanum doping enhance catalytic performance of silver in direct propylene epoxidation over NaMoAg/SiO_2?
5
作者 Hany M.Abdel Dayem Shar S.Al-Shihry Salah A.Hassan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第5期500-507,共8页
In the attempt to reduce surface free energy of silica to improve interaction of silica with silver, silica was doped by different amounts of low surface energy lanthanum, La_2O_3, through impregnation. The doped and ... In the attempt to reduce surface free energy of silica to improve interaction of silica with silver, silica was doped by different amounts of low surface energy lanthanum, La_2O_3, through impregnation. The doped and undoped silica were used as supports for preparation of Na/Ag/Mo/La_2O_3-SiO_2 catalysts. Catalytic performances of the catalysts were evaluated in direct epoxidation of propylene(DPO) using molecular oxygen under atmospheric pressure and without adding hydrogen. Adding 5 wt%La to the Na/Ag/Mo/SiO_2 catalyst improves both the catalysts electivity in DPO and its stability over 20h of time-on-stream.The characterization results show that La_2O_3 species interact strongly with silver particles on the silica surface which result in significant improvement in the dispersion profile of silver and marked decrease in the size of silver nanoparticles(AgNPs). The estimated mean diameter of AgNPs is ca. 4.0 nm in Na/Ag/Mo/5 wt%La_2O_3-SiO_2, which is smaller than that(53.9 nm) found in Na/Ag/SiO_2. The presence of subnanometer AgNPs on Ag/La_2O_3-SiO_2 prior addition of MoO_3 and NaCl to the sample can enhance the mutual electronic synergism between Ag, MoO_3 and Na for selective production of propylene oxide. 展开更多
关键词 DIRECT EPOXIDATION PROPYLENE Gas phase SILVER subnanometer LANTHANUM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部