A subranging analog-to-digital converter (ADC) features high-speed and relatively low-power. The limiting factors of power reduction in subranging ADCs are the resistor ladder and the comparator. We propose an ADC arc...A subranging analog-to-digital converter (ADC) features high-speed and relatively low-power. The limiting factors of power reduction in subranging ADCs are the resistor ladder and the comparator. We propose an ADC architecture combining a capacitive digital-to-analog convertor and built-in threshold calibration to eliminate the resistor ladder, resulting in a low-power subranging ADC. We also propose a calibration technique comprising of metal-oxide-metal capacitor, MOS switch, and scaling capacitor to reduce the power consumption of the comparator and an offset drift compensation technique to enable precise foreground calibration. We designed an 8-bit, 1-GHz subranging ADC by applying these techniques, and post-layout simulation results demonstrated a power consumption of 7 mW and figure of merit of 51 fJ/conv.-step.展开更多
Experimental results on the instability of the isothermal natural-convection boundary layer around a vertical heated flat plate are presented. It is demonstrated that the characteristics of the instability wave in the...Experimental results on the instability of the isothermal natural-convection boundary layer around a vertical heated flat plate are presented. It is demonstrated that the characteristics of the instability wave in the outer layer is consistent with the calculation of Brewster & Gebhart. Aft;er an initial growth of its low frequency components at the downstream side of the turning point of the neutral curve (Gr approximate to 120) its comparatively higher frequency components develop and become turbulent subsequently with a buoyancy subrange in its power spectra. Simultaneously, in the measurement at the inner layer near the wail a viscous instability signal the same as the Tollmien-Schlichting waves in ordinary boundary layer and its subharmonics in a much higher frequency domain is discovered and an inertial subrange can be observed in the spectra at Gr approximate to 378.6.展开更多
The wind velocity spectra at Beijing Meteorological Tower are calculated using Hilbert-Huang transform and Fourier transform,respectively.A innovative model of wind velocity spectrum,which is accordant with the charac...The wind velocity spectra at Beijing Meteorological Tower are calculated using Hilbert-Huang transform and Fourier transform,respectively.A innovative model of wind velocity spectrum,which is accordant with the characteristics in both the inertial subrange and the large eddies range,is presented in this paper.The method of least squares is adopted to obtain the parameters in the model.Then the differences between the FFT spectrum and the HHT spectrum are compared.It is indicated that the values of the HHT spectrum in the energy containing range are slightly larger than those of the FFT spectrum while the values of the HHT spectrum in both inertial subrange and dissipation subrange are very close to that of Fourier spectrum.It is concluded that the HHT spectrum describes elaborately and accurately the spectrum values in the low frequencies and the fitted wind velocity model provides a reference for reconstructing the near-ground wind field of Beijing city in wind tunnel test and for numerical simulation.展开更多
The streamwise fluctuating velocity in the turbulent boundary layer is measured under approximately medium Reynolds Number by hot wire in order to investigate the scaling properties of the overlapped turbulent spectru...The streamwise fluctuating velocity in the turbulent boundary layer is measured under approximately medium Reynolds Number by hot wire in order to investigate the scaling properties of the overlapped turbulent spectrum among energy-containing area, inertial subrange and dissipation range based on FFT analysis. The experiment indicates that the high Reynolds flow reported before is not indispensable to produce -1 scaling. So far as the measured position is provided with much higher spatial resolution and enough closing to the wall, -1 scaling is determinate to exist when approaching medium Reynolds. The scaling ranges are supposed to begin at inner scale and end in outer scale, which reveals the local similarity of the energy spectrum over the energy-containing eddies near the wall. In the logarithmic area (y+ > 130), -5/3 scaling occurs in the energy spectrum, while moving away from the wall with Reynolds numbers increasing, the inertial subrange extends to the lower wavenumbers. On the condition k1η 0.1, the curves of the turbulence spectrum in the logarithmic layer are superposed, which expresses the similarity of turbulence energy distributed in Komogorov scaling area and exhibits local isotropy characteristics by virtue of the viscous dissipation.展开更多
This paper presents an 11-bit 200MS/s subrange S AR ADC with an integrated reference buffer in 65nm CMOS.The proposed ADC employs a 3.5-bit flash ADC for coarse conversion,and a compact timing scheme at the flash/SAR ...This paper presents an 11-bit 200MS/s subrange S AR ADC with an integrated reference buffer in 65nm CMOS.The proposed ADC employs a 3.5-bit flash ADC for coarse conversion,and a compact timing scheme at the flash/SAR boundary to speed up the conversion.The flash decision is used to control charge compensating for the reference voltage to reduce its input-dependent fluctuation.Measurement results show that the fabricated ADC has achieved significant improvement by applying the reference charge compensation.In addition,the ADC achieves a maximum signal-to-noise-and-distortion ratio of 59.3dB at 200MS/s.It consumes 3.91mW from a 1.2V supply,including the reference buffer.展开更多
This paper presents a 10-bit 50-MS/s subrange successive-approximation register (SAR) analog-to- digital converter (ADC) composed of a 4-bit SAR coarse ADC and a 6-bit SAR fine ADC. In the coarse ADC, multi- compa...This paper presents a 10-bit 50-MS/s subrange successive-approximation register (SAR) analog-to- digital converter (ADC) composed of a 4-bit SAR coarse ADC and a 6-bit SAR fine ADC. In the coarse ADC, multi- comparator SAR architecture is used to reduce the digital logic propagation delay, and a traditional asynchronous SAR ADC with monotonic switching method is used as the fine ADC. With that combination, power dissipation also can be much reduced. Meanwhile, a modified SAR control logic is adopted in the fine ADC to speed up the conversion and other techniques, such as splitting capacitors array, are borrowed to reduce the power consumption. Fabricated with 1PSM 130-nm CMOS technology, the proposed SAR ADC achieves 51.6-dB signal to noise and distortion ratio (SNDR) and consumes 186μW at 50 MS/s with a 1-V supply, resulting in a figure of merit (FOM) of 12 fJ/conversion-step. The core area is only 0.045 mm2.展开更多
文摘A subranging analog-to-digital converter (ADC) features high-speed and relatively low-power. The limiting factors of power reduction in subranging ADCs are the resistor ladder and the comparator. We propose an ADC architecture combining a capacitive digital-to-analog convertor and built-in threshold calibration to eliminate the resistor ladder, resulting in a low-power subranging ADC. We also propose a calibration technique comprising of metal-oxide-metal capacitor, MOS switch, and scaling capacitor to reduce the power consumption of the comparator and an offset drift compensation technique to enable precise foreground calibration. We designed an 8-bit, 1-GHz subranging ADC by applying these techniques, and post-layout simulation results demonstrated a power consumption of 7 mW and figure of merit of 51 fJ/conv.-step.
基金The project supported by the National Natural Science Foundation of China(19572004)
文摘Experimental results on the instability of the isothermal natural-convection boundary layer around a vertical heated flat plate are presented. It is demonstrated that the characteristics of the instability wave in the outer layer is consistent with the calculation of Brewster & Gebhart. Aft;er an initial growth of its low frequency components at the downstream side of the turning point of the neutral curve (Gr approximate to 120) its comparatively higher frequency components develop and become turbulent subsequently with a buoyancy subrange in its power spectra. Simultaneously, in the measurement at the inner layer near the wail a viscous instability signal the same as the Tollmien-Schlichting waves in ordinary boundary layer and its subharmonics in a much higher frequency domain is discovered and an inertial subrange can be observed in the spectra at Gr approximate to 378.6.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90815021, 51021140005, 50978025, 50938008)
文摘The wind velocity spectra at Beijing Meteorological Tower are calculated using Hilbert-Huang transform and Fourier transform,respectively.A innovative model of wind velocity spectrum,which is accordant with the characteristics in both the inertial subrange and the large eddies range,is presented in this paper.The method of least squares is adopted to obtain the parameters in the model.Then the differences between the FFT spectrum and the HHT spectrum are compared.It is indicated that the values of the HHT spectrum in the energy containing range are slightly larger than those of the FFT spectrum while the values of the HHT spectrum in both inertial subrange and dissipation subrange are very close to that of Fourier spectrum.It is concluded that the HHT spectrum describes elaborately and accurately the spectrum values in the low frequencies and the fitted wind velocity model provides a reference for reconstructing the near-ground wind field of Beijing city in wind tunnel test and for numerical simulation.
基金Supported by the National Natural Science Foundation of China(Grant Nos.10832001 and 10872145)the Program for New Century Excellent Talents in Universities of Education Ministry of Chinathe Plan of Tianjin Science and Technology Development(Grant No.06TXTJJC13800)
文摘The streamwise fluctuating velocity in the turbulent boundary layer is measured under approximately medium Reynolds Number by hot wire in order to investigate the scaling properties of the overlapped turbulent spectrum among energy-containing area, inertial subrange and dissipation range based on FFT analysis. The experiment indicates that the high Reynolds flow reported before is not indispensable to produce -1 scaling. So far as the measured position is provided with much higher spatial resolution and enough closing to the wall, -1 scaling is determinate to exist when approaching medium Reynolds. The scaling ranges are supposed to begin at inner scale and end in outer scale, which reveals the local similarity of the energy spectrum over the energy-containing eddies near the wall. In the logarithmic area (y+ > 130), -5/3 scaling occurs in the energy spectrum, while moving away from the wall with Reynolds numbers increasing, the inertial subrange extends to the lower wavenumbers. On the condition k1η 0.1, the curves of the turbulence spectrum in the logarithmic layer are superposed, which expresses the similarity of turbulence energy distributed in Komogorov scaling area and exhibits local isotropy characteristics by virtue of the viscous dissipation.
基金supported by the Zhongxing Telecommunication Equipment CorporationBeijing Microelectronics Technology Institute
文摘This paper presents an 11-bit 200MS/s subrange S AR ADC with an integrated reference buffer in 65nm CMOS.The proposed ADC employs a 3.5-bit flash ADC for coarse conversion,and a compact timing scheme at the flash/SAR boundary to speed up the conversion.The flash decision is used to control charge compensating for the reference voltage to reduce its input-dependent fluctuation.Measurement results show that the fabricated ADC has achieved significant improvement by applying the reference charge compensation.In addition,the ADC achieves a maximum signal-to-noise-and-distortion ratio of 59.3dB at 200MS/s.It consumes 3.91mW from a 1.2V supply,including the reference buffer.
基金Project supported by the National Natural Science Foundation of China(Nos.61204033,61331015)the Fundamental Research Funds for the Central Universities(No.WK2100230015)the Funds of Science and Technology on Analog Integrated Circuit Laboratory(No.9140C090111150C09041)
文摘This paper presents a 10-bit 50-MS/s subrange successive-approximation register (SAR) analog-to- digital converter (ADC) composed of a 4-bit SAR coarse ADC and a 6-bit SAR fine ADC. In the coarse ADC, multi- comparator SAR architecture is used to reduce the digital logic propagation delay, and a traditional asynchronous SAR ADC with monotonic switching method is used as the fine ADC. With that combination, power dissipation also can be much reduced. Meanwhile, a modified SAR control logic is adopted in the fine ADC to speed up the conversion and other techniques, such as splitting capacitors array, are borrowed to reduce the power consumption. Fabricated with 1PSM 130-nm CMOS technology, the proposed SAR ADC achieves 51.6-dB signal to noise and distortion ratio (SNDR) and consumes 186μW at 50 MS/s with a 1-V supply, resulting in a figure of merit (FOM) of 12 fJ/conversion-step. The core area is only 0.045 mm2.