The lacustrine shale of deep Shahezi Formation in the Songliao basin has great gas potential,but its pore evolution,heterogeneity,and connectivity characteristics remain unclear.In this work,total organic carbon analy...The lacustrine shale of deep Shahezi Formation in the Songliao basin has great gas potential,but its pore evolution,heterogeneity,and connectivity characteristics remain unclear.In this work,total organic carbon analysis,rock pyrolysis,X-ray diffraction field emission scanning electron microscopy,the particle and crack analysis system software,low-temperature nitrogen adsorption experiment,fractal theory,high-pressure mercury injection experiment and nuclear magnetic resonance experiment were used to study the Shahezi shale from Well SK-2.The result indicated that the organic pores in Shahezi shale are not developed,and the intergranular and intragranular pores are mainly formed by illitedominated clay.As the burial depth increases,the pore size and slit-shaped pores formed by clay decrease,and dissolved pores in the feldspar and carbonate minerals and dissolved fractures in the quartz increase.The pore evolution is affected by clay,compaction,and high-temperature corrosion.Based on the pore structure characteristics reflected by the pore size distribution and pore structure parameters obtained by multiple experimental methods,the pore development and evolution are divided into three stages.During stageⅠandⅡ,the pore heterogeneity of the shale reservoirs increases with the depth,the physical properties and pore connectivity deteriorate,but the gas-bearing property is good.In stageⅢ,the pore heterogeneity is the highest,its gas generation and storage capacity are low,but the increase of micro-fractures makes pore connectivity and gas-bearing better.展开更多
Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, p...Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density p versus porosity Ф, density times the square of compressional wave velocity p Vp^2 versus porosity, and density times the square of shear wave velocity pVs^2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.展开更多
The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T cond...The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the vertical pathways(composed of gas chimneys) in the gas hydrate drilling area might be relatively low. Description and qualitative discrimination of migration pathways in the Shenhu gas hydrate drilling area are helpful to further understand the relationship between good-quality deep source rocks and shallow, mainly biogenicallyproduced, hydrates. As the main source rocks of the Baiyun sag, lacustrine mudstones in the Wenchang and Enping Formations may provide thermogenic methane. Gas chimneys with relatively low migration efficiency created the vertical pathways. Caused by the Dongsha tectonic movement, the release of overpressured fluids might reduce the vertical migration rates of the thermogenic methane. The thick bathyal/abyssal fine-grained sediments since the Late Miocene provided migration media with low permeability. These preconditions may cause carbon isotopic fractionation ofthermogenic methane during long-distance vertical migrations. Therefore, although geochemical analyses indicate that the methane forming gas hydrate in the Shenhu area was mainly produced biogenically, or was mixed methane primarily of microbial origin, thermogenic methane still contribute significantly.展开更多
A new geo-acoustic model for gas-bearing sediment is proposed based on the work of Dvorkin and Prasad, and Biot theory. Only five geophysical parameters: sediment mineral composition, free gas saturation, tortuosity ...A new geo-acoustic model for gas-bearing sediment is proposed based on the work of Dvorkin and Prasad, and Biot theory. Only five geophysical parameters: sediment mineral composition, free gas saturation, tortuosity (also known as the structure factor), permeability, and porosity, are considered in the model. A benefit of this model is that we need only five parameters instead of ten parameters in the Blot' s formulas for acoustic velocity and attenuation calculation. Here the model is demonstrated with the in-situ experimental data collected from the Hangzhou Bay, China. The results of this study suggest that free gas content in sediment is the most critical condition resulting in a low acoustic velocity (compressional wave). The respective contributions of the other four parameters in the model are also discussed.展开更多
Based on correlation between geochemical characteristics of Sinian and Cambrian source rocks and discovered gas reservoirs,paleoand the analysis on geological conditions of reservoir formation,the sources of natural g...Based on correlation between geochemical characteristics of Sinian and Cambrian source rocks and discovered gas reservoirs,paleoand the analysis on geological conditions of reservoir formation,the sources of natural gas in the Sinian of Sichuan Basin have been discussed to sort out the contribution of Sinian source rocks to the gas reservoirs and effectiveness of Sinian primary gas-bearing system.Through the analysis of natural gas composition,carbon and hydrogen isotopes and effectiveness of Sinian accumulation assemblages,it is concluded that:(1)The natural gas derived from the Sinian source rock is characterized by low ethane content,heavy ethane carbon isotope and light methane hydrogen isotope,and obviously different from the gas generated by the Cambrian source rock.(2)The gas reservoirs discovered in Sinian Dengying Formation are sourced by Sinian and Cambrian source rocks,and the Sinian source rock contributes different proportions to the gas in the 4th member and the 2nd member of the Dengying Formation,specifically,39%and 55%to the 4th member in marginal zone and intra-platform,54%and 68%to the 2th member in the marginal zone and intra-platform respectively.(3)The effectiveness of the Sinian primary gas-bearing system depends on the gas generating effectiveness of the source kitchen,reservoir and combination of gas accumulation elements.For high-over mature marine source rocks at the Ro of less than 3.5%,besides gas generated from the thermal cracking of liquid hydrocarbon,the kerogen still has some gas generation potential by thermal degradation.In addition,the Sinian microbial dolomite still preserves relatively good-quality reservoirs despite large burial depths,which match well with other basic conditions for gas accumulation in central Sichuan paleo-uplift,increasing the possibility of Sinian primary gas-bearing system.The research results confirm that the Sinian primary gas-bearing system is likely to form large-scale accumulation.展开更多
In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift be...In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift belt of Xuefeng Mountain was selected as the target area,and Well Huangdi 1 was drilled for the geological survey of shale gas.Through geological background analysis and well logging and laboratory analysis such as organic geochemical test,gas content analysis,isothermal adsorption,and specific surface area experiments on Well Huangdi 1,the results show that the Niutitang Formation is a deep-water shelf,trough-like folds and thrust fault.The thickness of black shale is 119.95 m,of which carbonaceous shale is 89.6 m.The average value of organic carbon content is 3.55%,kerogen vitrinite reflectance value is 2.37% and kerogen type is sapropel-type.The brittle mineral content is 51%(quartz 38%),clay mineral content is 38.3%.The value of porosity and permeability are 0.5%and 0.0014 mD,which the reservoir of the Niutitang Formation belongs to low permeability with characteristics of ultra-low porosity.The gas content is 0.09‒1.31 m^3/t with a high-value area and a second high-value area.By comparing with the geological parameters of adjacent wells in the adjacent area,the accumulation model of“sediment control zone,Ro control zone,structure controlling reservoir”in the study area is proposed.Therefore,deep-water shelf-slope facies,Ro is between high maturity-early stage of overmaturity and well-preserved zones in the Niutitang Formation in this area are favorable direction for the next step of shale gas exploration.展开更多
Nowadays,the unconventional gas-bearing system plays an increasingly important role in energy market.The performances of the current history-matching techniques are not satisfied when applied to such systems.To overco...Nowadays,the unconventional gas-bearing system plays an increasingly important role in energy market.The performances of the current history-matching techniques are not satisfied when applied to such systems.To overcome this shortfall,an alternative approach was developed and applied to investigate production data from an unconventional gas-bearing system.In this approach,the fluid flow curve obtained from the field is the superposition of a series of Gaussian functions.An automatic computing program was developed in the MATLAB,and both gas and water field data collected from a vertical well in the Linxing Block,Ordos Basin,were used to present the data processing technique.In the reservoir study,the automatic computing program was applied to match the production data from a single coal seam,multiple coal seams and multiple vertically stacked reservoirs with favourable fitting results.Compared with previous approaches,the proposed approach yields better results for both gas and water production data and can calculate the contributions from different reservoirs.The start time of the extraction for each gas-containing unit can also be determined.The new approach can be applied to the field data prediction and designation for the well locations and patterns at the reservoir scale.展开更多
The authors generalized the methods how to identify and evaluate gas zones using logs,and put forward the methods of crossplots and overlays of porosity logs on the identification of volcanic gas-bearing reservoirs in...The authors generalized the methods how to identify and evaluate gas zones using logs,and put forward the methods of crossplots and overlays of porosity logs on the identification of volcanic gas-bearing reservoirs in the northern Songliao Basin with good results.This study provides technical clues in deep formations and offers references for other areas to identify oil and gas layers.展开更多
Based on thin-section,argon-ion polished large-area imaging and nano-CT scanning data,the reservoir characteristics and genetic mechanisms of the Lower Silurian Longmaxi shale layers with different laminae and laminae...Based on thin-section,argon-ion polished large-area imaging and nano-CT scanning data,the reservoir characteristics and genetic mechanisms of the Lower Silurian Longmaxi shale layers with different laminae and laminae combinations in the Sichuan Basin were examined.It is found that the shale has two kinds of laminae,clayey lamina and silty lamina,which are different in single lamina thickness,composition,pore type and structure,plane porosity and pore size distribution.The clayey laminae are about 100μm thick each,over 15%in organic matter content,over 70%in quartz content,and higher in organic pore ratio and plane porosity.They have abundant bedding fractures and organic matter and organic pores connecting with each other to form a network.In contrast,the silty laminae are about 50μm thick each,5%to 15%in organic matter content,over 50%in carbonate content,higher in inorganic pore ratio,undeveloped in bedding fracture,and have organic matter and organic pores disconnected from each other.The formation of mud lamina and silt lamina may be related to the flourish of silicon-rich organisms.The mud lamina is formed during the intermittent period,and silt lamina is formed during the bloom period of silicon-rich organisms.The mud laminae and silt laminae can combine into three types of assemblages:strip-shaped silt,gradating sand-mud and sand-mud thin interlayers.The strip-shaped silt assemblage has the highest porosity and horizontal/vertical permeability ratio,followed by the gradating sand-mud assemblage and sand-mud thin interlayer assemblage.The difference in the content ratio of the mud laminae to silt laminae results in the difference in the horizontal/vertical permeability ratio.展开更多
Using field geological survey,drilling and seismic data,combined with the study of regional tectonic evolution and structural deformation,as well as lithological and sedimentary analysis,we reconstructed the basin fil...Using field geological survey,drilling and seismic data,combined with the study of regional tectonic evolution and structural deformation,as well as lithological and sedimentary analysis,we reconstructed the basin filling process and paleo-geography of north Tarim Basin in Early Cambrian,aiming to analyze the factors controlling the distribution and spatial architecture of the subsalt reservoir and source units and to define the favorable exploration direction.The Late Sinian tectonic activities in the northern Tarim Basin were characterized by different patterns in different areas,which controlled the sedimentary pattern in the Early Cambrian.The boundary faults of Nanhuaian rift basin in the south slope of Tabei uplift and the north slope of Tazhong uplift became reactivated in the Early Cambrian,forming two NEE and EW striking subsidence centers and depocenters,where the predicted thickness of the Yurtusi Formation could reach 250 meters.In the Xiaoerbulake period,the weak rimmed platform was developed in the hanging wall of syndepositional fault.Whereas the Nanhuaian rift system in the Tadong and Manxi areas were uplifted and destroyed in the Late Sinian,and appeared as gently slope transiting toward the subsidence center in the Early Cambrian.The former had the sedimentary features of hybrid facies platform and the latter had the sedimentary features of ramp platform.The black shale of the Yurtus Formation in the footwall of syndepositional fault and the reef bank of Xiaoerbulake Formation platform margin in the hanging wall in Early Cambrian constitute a predicable source-reservoir combination.The activity intensity of syndepositional fault controlled the thickness of black shale and the scale of the reef bank.It is suggested carrying out high accuracy seismic exploration to determine the location of Early Cambrian syndepositional faults,on this basis,to search the reef bank of Xiaoerbulake Formation along the faults westward,and then drill risk exploration wells at sites where traps are shallow in buried depth.展开更多
Geological conditions and main controlling factors of gas accumulation in subsalt Ma 4 Member of Ordovician Majiagou Formation are examined based on large amounts of drilling,logging and seismic data.The new understan...Geological conditions and main controlling factors of gas accumulation in subsalt Ma 4 Member of Ordovician Majiagou Formation are examined based on large amounts of drilling,logging and seismic data.The new understandings on the control of paleo-uplift over facies,reservoirs and accumulations are reached:(1)During the sedimentary period of Majiagou Formation,the central paleo-uplift divided the North China Sea in central-eastern of the basin from the Qinqi Sea at southwest margin of the basin,and controlled the deposition of the thick hummocky grain beach facies dolomite on platform margin of Ma 4 Member.Under the influence of the evolution of the central paleo-uplift,the frame of two uplifts alternate with two sags was formed in the central-eastern part of the basin,dolomite of inner-platform beach facies developed in the underwater low-uplift zones,and marl developed in the low-lying areas between uplifts.(2)From the central paleo-uplift to the east margin of the basin,the dolomite in the Ma 4 Member gradually becomes thinner and turns into limestone.The lateral sealing of the limestone sedimentary facies transition zone gives rise to a large dolomite lithological trap.(3)During the late Caledonian,the basin was uplifted as a whole,and the central paleo-uplift was exposed and denuded to various degrees;high-quality Upper Paleozoic Carboniferous-Permian coal measures source rocks deposited on the paleo-uplift in an area of 60000 km^(2),providing large-scale hydrocarbon for the dolomite lithological traps in the underlying Ma 4 Member.(4)During the Indosinian-Yanshanian stage,the basin tilted westwards,and central paleo-uplift depressed into an efficient hydrocarbon supply window.The gas from the Upper Paleozoic source rock migrated through the high porosity and permeability dolomite in the central paleo-uplift to and accumulated in the updip high part;meanwhile,the subsalt marine source rock supplied gas through the Caledonian faults and micro-fractures as a significant supplementary.Under the guidance of the above new understandings,two favorable exploration areas in the Ma 4 Member in the central-eastern basin were sorted out.Two risk exploration wells were deployed,both revealed thick gas-bearing layer in Ma 4 Member,and one of them tapped high production gas flow.The study has brought a historic breakthrough in the gas exploration of subsalt Ma 4 Member of Ordovician,and opened up a new frontier of gas exploration in the Ordos Basin.展开更多
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i...Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42072168 and 41802156)the National Key R&D Program of China(Grant No.2019YFC0605405)the Fundamental Research Funds for the Central Universities(Grant Nos.2023ZKPYDC07 and 2022YQDC06)。
文摘The lacustrine shale of deep Shahezi Formation in the Songliao basin has great gas potential,but its pore evolution,heterogeneity,and connectivity characteristics remain unclear.In this work,total organic carbon analysis,rock pyrolysis,X-ray diffraction field emission scanning electron microscopy,the particle and crack analysis system software,low-temperature nitrogen adsorption experiment,fractal theory,high-pressure mercury injection experiment and nuclear magnetic resonance experiment were used to study the Shahezi shale from Well SK-2.The result indicated that the organic pores in Shahezi shale are not developed,and the intergranular and intragranular pores are mainly formed by illitedominated clay.As the burial depth increases,the pore size and slit-shaped pores formed by clay decrease,and dissolved pores in the feldspar and carbonate minerals and dissolved fractures in the quartz increase.The pore evolution is affected by clay,compaction,and high-temperature corrosion.Based on the pore structure characteristics reflected by the pore size distribution and pore structure parameters obtained by multiple experimental methods,the pore development and evolution are divided into three stages.During stageⅠandⅡ,the pore heterogeneity of the shale reservoirs increases with the depth,the physical properties and pore connectivity deteriorate,but the gas-bearing property is good.In stageⅢ,the pore heterogeneity is the highest,its gas generation and storage capacity are low,but the increase of micro-fractures makes pore connectivity and gas-bearing better.
基金supported by the National Natural Science Foundation of China (Grant No.40874052)the Key Laboratory of Geo-detection (China University of Geosciences,Beijing),Ministry of Education
文摘Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density p versus porosity Ф, density times the square of compressional wave velocity p Vp^2 versus porosity, and density times the square of shear wave velocity pVs^2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.
基金supported by the National Natural Science Foundation of China (grants No.41576048,41202080 and 41176052)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology) (grant No.PLC201402)+1 种基金the Youth Innovation Promotion Association CAS (2016312)the Scientific Cooperative Project by CNPC and CAS (2015A-4813)
文摘The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the vertical pathways(composed of gas chimneys) in the gas hydrate drilling area might be relatively low. Description and qualitative discrimination of migration pathways in the Shenhu gas hydrate drilling area are helpful to further understand the relationship between good-quality deep source rocks and shallow, mainly biogenicallyproduced, hydrates. As the main source rocks of the Baiyun sag, lacustrine mudstones in the Wenchang and Enping Formations may provide thermogenic methane. Gas chimneys with relatively low migration efficiency created the vertical pathways. Caused by the Dongsha tectonic movement, the release of overpressured fluids might reduce the vertical migration rates of the thermogenic methane. The thick bathyal/abyssal fine-grained sediments since the Late Miocene provided migration media with low permeability. These preconditions may cause carbon isotopic fractionation ofthermogenic methane during long-distance vertical migrations. Therefore, although geochemical analyses indicate that the methane forming gas hydrate in the Shenhu area was mainly produced biogenically, or was mixed methane primarily of microbial origin, thermogenic methane still contribute significantly.
基金supported by the National Natural Science Foundation of China(Grant No.40776038)the Open Fund of Key Laboratory of Geo-detection(China University of Geosciences,Beijing)+2 种基金Ministry of Education(Grant No.GDL0802)the Ocean Public Welfare Scientific Research Special Appropriation Project(Grant Nos.200805079and200805005)the Open Fund of Key Laboratory of Submarine Geoscience,State Oceanic Administration(Grant No.KCSG0803)
文摘A new geo-acoustic model for gas-bearing sediment is proposed based on the work of Dvorkin and Prasad, and Biot theory. Only five geophysical parameters: sediment mineral composition, free gas saturation, tortuosity (also known as the structure factor), permeability, and porosity, are considered in the model. A benefit of this model is that we need only five parameters instead of ten parameters in the Blot' s formulas for acoustic velocity and attenuation calculation. Here the model is demonstrated with the in-situ experimental data collected from the Hangzhou Bay, China. The results of this study suggest that free gas content in sediment is the most critical condition resulting in a low acoustic velocity (compressional wave). The respective contributions of the other four parameters in the model are also discussed.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010403)the China National Science and Technology Major Project(2016ZX05004,2016ZX05007-003)the Science and Technology Project of China National Petroleum Corporation(kt2020-01-03,2021DJ06)。
文摘Based on correlation between geochemical characteristics of Sinian and Cambrian source rocks and discovered gas reservoirs,paleoand the analysis on geological conditions of reservoir formation,the sources of natural gas in the Sinian of Sichuan Basin have been discussed to sort out the contribution of Sinian source rocks to the gas reservoirs and effectiveness of Sinian primary gas-bearing system.Through the analysis of natural gas composition,carbon and hydrogen isotopes and effectiveness of Sinian accumulation assemblages,it is concluded that:(1)The natural gas derived from the Sinian source rock is characterized by low ethane content,heavy ethane carbon isotope and light methane hydrogen isotope,and obviously different from the gas generated by the Cambrian source rock.(2)The gas reservoirs discovered in Sinian Dengying Formation are sourced by Sinian and Cambrian source rocks,and the Sinian source rock contributes different proportions to the gas in the 4th member and the 2nd member of the Dengying Formation,specifically,39%and 55%to the 4th member in marginal zone and intra-platform,54%and 68%to the 2th member in the marginal zone and intra-platform respectively.(3)The effectiveness of the Sinian primary gas-bearing system depends on the gas generating effectiveness of the source kitchen,reservoir and combination of gas accumulation elements.For high-over mature marine source rocks at the Ro of less than 3.5%,besides gas generated from the thermal cracking of liquid hydrocarbon,the kerogen still has some gas generation potential by thermal degradation.In addition,the Sinian microbial dolomite still preserves relatively good-quality reservoirs despite large burial depths,which match well with other basic conditions for gas accumulation in central Sichuan paleo-uplift,increasing the possibility of Sinian primary gas-bearing system.The research results confirm that the Sinian primary gas-bearing system is likely to form large-scale accumulation.
基金This research was financially supported by the National Science and Technology Major Project(2016ZX05034)project of China Gelogical Survey(DD20160181).
文摘In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift belt of Xuefeng Mountain was selected as the target area,and Well Huangdi 1 was drilled for the geological survey of shale gas.Through geological background analysis and well logging and laboratory analysis such as organic geochemical test,gas content analysis,isothermal adsorption,and specific surface area experiments on Well Huangdi 1,the results show that the Niutitang Formation is a deep-water shelf,trough-like folds and thrust fault.The thickness of black shale is 119.95 m,of which carbonaceous shale is 89.6 m.The average value of organic carbon content is 3.55%,kerogen vitrinite reflectance value is 2.37% and kerogen type is sapropel-type.The brittle mineral content is 51%(quartz 38%),clay mineral content is 38.3%.The value of porosity and permeability are 0.5%and 0.0014 mD,which the reservoir of the Niutitang Formation belongs to low permeability with characteristics of ultra-low porosity.The gas content is 0.09‒1.31 m^3/t with a high-value area and a second high-value area.By comparing with the geological parameters of adjacent wells in the adjacent area,the accumulation model of“sediment control zone,Ro control zone,structure controlling reservoir”in the study area is proposed.Therefore,deep-water shelf-slope facies,Ro is between high maturity-early stage of overmaturity and well-preserved zones in the Niutitang Formation in this area are favorable direction for the next step of shale gas exploration.
基金financially supported by the National Key Research and Development Programme(Grant Nos.2016ZX05067004-004 and 2016ZX05043005-003)the Chongqing Science and Technology Innovation Leader Talent Support Programme(Grant No.CSTCKJCXLJRC14)。
文摘Nowadays,the unconventional gas-bearing system plays an increasingly important role in energy market.The performances of the current history-matching techniques are not satisfied when applied to such systems.To overcome this shortfall,an alternative approach was developed and applied to investigate production data from an unconventional gas-bearing system.In this approach,the fluid flow curve obtained from the field is the superposition of a series of Gaussian functions.An automatic computing program was developed in the MATLAB,and both gas and water field data collected from a vertical well in the Linxing Block,Ordos Basin,were used to present the data processing technique.In the reservoir study,the automatic computing program was applied to match the production data from a single coal seam,multiple coal seams and multiple vertically stacked reservoirs with favourable fitting results.Compared with previous approaches,the proposed approach yields better results for both gas and water production data and can calculate the contributions from different reservoirs.The start time of the extraction for each gas-containing unit can also be determined.The new approach can be applied to the field data prediction and designation for the well locations and patterns at the reservoir scale.
基金Supported by National Oil-gas project : No XQ-2004-07
文摘The authors generalized the methods how to identify and evaluate gas zones using logs,and put forward the methods of crossplots and overlays of porosity logs on the identification of volcanic gas-bearing reservoirs in the northern Songliao Basin with good results.This study provides technical clues in deep formations and offers references for other areas to identify oil and gas layers.
基金Supported by China National Science and Technology Major Project(2017ZX05035-001)National Natural Science Fund Project(41572079)
文摘Based on thin-section,argon-ion polished large-area imaging and nano-CT scanning data,the reservoir characteristics and genetic mechanisms of the Lower Silurian Longmaxi shale layers with different laminae and laminae combinations in the Sichuan Basin were examined.It is found that the shale has two kinds of laminae,clayey lamina and silty lamina,which are different in single lamina thickness,composition,pore type and structure,plane porosity and pore size distribution.The clayey laminae are about 100μm thick each,over 15%in organic matter content,over 70%in quartz content,and higher in organic pore ratio and plane porosity.They have abundant bedding fractures and organic matter and organic pores connecting with each other to form a network.In contrast,the silty laminae are about 50μm thick each,5%to 15%in organic matter content,over 50%in carbonate content,higher in inorganic pore ratio,undeveloped in bedding fracture,and have organic matter and organic pores disconnected from each other.The formation of mud lamina and silt lamina may be related to the flourish of silicon-rich organisms.The mud lamina is formed during the intermittent period,and silt lamina is formed during the bloom period of silicon-rich organisms.The mud laminae and silt laminae can combine into three types of assemblages:strip-shaped silt,gradating sand-mud and sand-mud thin interlayers.The strip-shaped silt assemblage has the highest porosity and horizontal/vertical permeability ratio,followed by the gradating sand-mud assemblage and sand-mud thin interlayer assemblage.The difference in the content ratio of the mud laminae to silt laminae results in the difference in the horizontal/vertical permeability ratio.
基金Supported by the National Key Research and Development Program of China(2017YFC0603101)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010101)Scientific Research and Technological Development Project of PetroChina(2018A-01).
文摘Using field geological survey,drilling and seismic data,combined with the study of regional tectonic evolution and structural deformation,as well as lithological and sedimentary analysis,we reconstructed the basin filling process and paleo-geography of north Tarim Basin in Early Cambrian,aiming to analyze the factors controlling the distribution and spatial architecture of the subsalt reservoir and source units and to define the favorable exploration direction.The Late Sinian tectonic activities in the northern Tarim Basin were characterized by different patterns in different areas,which controlled the sedimentary pattern in the Early Cambrian.The boundary faults of Nanhuaian rift basin in the south slope of Tabei uplift and the north slope of Tazhong uplift became reactivated in the Early Cambrian,forming two NEE and EW striking subsidence centers and depocenters,where the predicted thickness of the Yurtusi Formation could reach 250 meters.In the Xiaoerbulake period,the weak rimmed platform was developed in the hanging wall of syndepositional fault.Whereas the Nanhuaian rift system in the Tadong and Manxi areas were uplifted and destroyed in the Late Sinian,and appeared as gently slope transiting toward the subsidence center in the Early Cambrian.The former had the sedimentary features of hybrid facies platform and the latter had the sedimentary features of ramp platform.The black shale of the Yurtus Formation in the footwall of syndepositional fault and the reef bank of Xiaoerbulake Formation platform margin in the hanging wall in Early Cambrian constitute a predicable source-reservoir combination.The activity intensity of syndepositional fault controlled the thickness of black shale and the scale of the reef bank.It is suggested carrying out high accuracy seismic exploration to determine the location of Early Cambrian syndepositional faults,on this basis,to search the reef bank of Xiaoerbulake Formation along the faults westward,and then drill risk exploration wells at sites where traps are shallow in buried depth.
基金Supported by the Scientific Research and Technology Development Project of PetroChina。
文摘Geological conditions and main controlling factors of gas accumulation in subsalt Ma 4 Member of Ordovician Majiagou Formation are examined based on large amounts of drilling,logging and seismic data.The new understandings on the control of paleo-uplift over facies,reservoirs and accumulations are reached:(1)During the sedimentary period of Majiagou Formation,the central paleo-uplift divided the North China Sea in central-eastern of the basin from the Qinqi Sea at southwest margin of the basin,and controlled the deposition of the thick hummocky grain beach facies dolomite on platform margin of Ma 4 Member.Under the influence of the evolution of the central paleo-uplift,the frame of two uplifts alternate with two sags was formed in the central-eastern part of the basin,dolomite of inner-platform beach facies developed in the underwater low-uplift zones,and marl developed in the low-lying areas between uplifts.(2)From the central paleo-uplift to the east margin of the basin,the dolomite in the Ma 4 Member gradually becomes thinner and turns into limestone.The lateral sealing of the limestone sedimentary facies transition zone gives rise to a large dolomite lithological trap.(3)During the late Caledonian,the basin was uplifted as a whole,and the central paleo-uplift was exposed and denuded to various degrees;high-quality Upper Paleozoic Carboniferous-Permian coal measures source rocks deposited on the paleo-uplift in an area of 60000 km^(2),providing large-scale hydrocarbon for the dolomite lithological traps in the underlying Ma 4 Member.(4)During the Indosinian-Yanshanian stage,the basin tilted westwards,and central paleo-uplift depressed into an efficient hydrocarbon supply window.The gas from the Upper Paleozoic source rock migrated through the high porosity and permeability dolomite in the central paleo-uplift to and accumulated in the updip high part;meanwhile,the subsalt marine source rock supplied gas through the Caledonian faults and micro-fractures as a significant supplementary.Under the guidance of the above new understandings,two favorable exploration areas in the Ma 4 Member in the central-eastern basin were sorted out.Two risk exploration wells were deployed,both revealed thick gas-bearing layer in Ma 4 Member,and one of them tapped high production gas flow.The study has brought a historic breakthrough in the gas exploration of subsalt Ma 4 Member of Ordovician,and opened up a new frontier of gas exploration in the Ordos Basin.
基金funded by the Natural Science Foundation of Shandong Province (ZR2021MD061ZR2023QD025)+3 种基金China Postdoctoral Science Foundation (2022M721972)National Natural Science Foundation of China (41174098)Young Talents Foundation of Inner Mongolia University (10000-23112101/055)Qingdao Postdoctoral Science Foundation (QDBSH20230102094)。
文摘Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs.