The Chinese herbs Herba Epimedii, Fructus Ligustri Lucidi and Rhizoma Polygonati were injected into Parkinson's disease mice established via intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridin...The Chinese herbs Herba Epimedii, Fructus Ligustri Lucidi and Rhizoma Polygonati were injected into Parkinson's disease mice established via intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride. The selective monoamine oxidase B inhibitor selegiline was used as a positive control drug. After successive administration for 4 weeks, Herba Epimedii could downregulate the expression of caspase-3 and increase the brain-derived neurotrophic factor level, as well as increase tyrosine hydroxylase activity in the substantia nigra of Parkinson's disease mouse models. Rhizoma Polygonaticould downregulate the expression of caspase-3 and FasL, and increase neural growth factor and brain-derived neurotrophic factor levels. Fructus Ligustn Lucidi could downregulate caspase-3 expression. Rhizoma Polygonati and Fructus Ligustn Lucidi did not produce obvious effects on tyrosine hydroxylase activity. Herba Epimedii and Fructus Ligustri Lucidi yielded similar effects on apoptosis-promoting factors to those elicited by selegiline. Herba Epimedii and Rhizoma Polygonati significantly increased the levels of neurotrophic factors compared with selegiline. Herba Epimedii significantly increased tyrosine hydroxylase activity compared with selegiline. It is indicated that the kidney-tonifying Chinese herbal preparation can downregulate the expression of apoptosis-promoting factors, increase neurotrophic factors levels in the substantia nigra and striatum, as well as increase tyrosine hydroxylase activity in the substantia nigra of Parkinson's disease mouse models, thereby exerting a stronger or similar neuroprotective effects compared with selegiline.展开更多
To date, complex components of available reagents have been used for directional induction of neural stem cells into dopaminergic neurons, resulting in a poor ability to repeat experiments. This study sought to invest...To date, complex components of available reagents have been used for directional induction of neural stem cells into dopaminergic neurons, resulting in a poor ability to repeat experiments. This study sought to investigate whether a homogenate of the substantia nigra of adult rats and/or basic fibroblast growth factor could directionally induce neural stem cells derived from the subventricular zone of embryonic rats to differentiate into dopaminergic neurons. Tyrosine hydroxylase-positive cells were observed exclusively after induction with the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor for 48 hours in vitro. However, in the groups treated with homogenate supernatant or basic fibroblast growth factor alone, tyrosine hydroxylase expression was not observed. Moreover, the content of dopamine in the culture medium of subventricular zone neurons was significantly increased at 48 hours after induction with the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor. Experimental findings indicate that the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor could directionally induce neural stem cells derived from the subventricular zone of embryonic rats to differentiate into dopaminergic neurons in the substantia nigra with the ability to secrete dopamine.展开更多
The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination of movement by the brain's basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting ...The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination of movement by the brain's basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting in the cardinal motor deficits associated with Parkinson's disease. In order to fully understand the physiology of these key neurons and develop potential therapies for their loss, it is essential to determine if and how dopaminergic neurons are replenished in the adult brain. Recent work has presented evidence for adult neurogenesis of these neurons by Nestin+/Sox2 neural progenitor cells. We sought to further validate this finding and explore a potential atypical origin for these progenitor cells. Since neural progenitor cells have a proximal association with the vasculature of the brain and subsets of endothelial cells are Nestin+, we hypothesized that dopaminergic neural progenitors might share a common cell lineage. Therefore, we employed a VE-cadherin promoter-driven CREERT2:TIlox/Tlox transgenic mouse line to ablate the tyrosine hydroxylase gene from endothelial cells in adult animals. After 26 weeks, but not 13 weeks, following the genetic blockade of tyrosine hydroxylase expression in VE-cadherin+ cells, we observed a significant reduction in tyrosine hydroxylase+ neurons in the substantia nigra. The results from this genetic lineage tracing study suggest that dopaminergic neurons are replenished in adult mice by a VE-cadherin+ progenitor cell population potentially arising from an endothelial lineage.展开更多
Cell replacement therapy utilizing mesenchymal stem cells as its main resource holds great promise for ultimate treatment of human neurological disorders.Parkinson's disease(PD)is a common,chronic neurodegenerative...Cell replacement therapy utilizing mesenchymal stem cells as its main resource holds great promise for ultimate treatment of human neurological disorders.Parkinson's disease(PD)is a common,chronic neurodegenerative disorder hallmarked by localized degeneration of a specific set of dopaminergic neurons within a midbrain sub-region.The specific cell type and confined location of degenerating neurons make cell replacement therapy ideal for PD treatment since it mainly requires replenishment of lost dopaminergic neurons with fresh and functional ones.Endogenous as well as exogenous cell sources have been identified as candidate targets for cell replacement therapy in PD.In this review,umbilical cord mesenchymal stem cells(UCMSCs)are discussed as they provide an inexpensive unlimited reservoir differentiable towards functional dopaminergic neurons that potentially lead to long-lasting behavioral recovery in PD patients.We also present mi RNAs-mediated neuronal differentiation of UCMSCs.The UCMSCs bear a number of outstanding characteristics including their non-tumorigenic,low-immunogenic properties that make them ideal for cell replacement therapy purposes.Nevertheless,more investigations as well as controlled clinical trials are required to thoroughly confirm the efficacy of UCMSCs for therapeutic medical-grade applications in PD.展开更多
基金supported by the Natural Science Foundation of Fujian Province, No. 2009J06018
文摘The Chinese herbs Herba Epimedii, Fructus Ligustri Lucidi and Rhizoma Polygonati were injected into Parkinson's disease mice established via intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride. The selective monoamine oxidase B inhibitor selegiline was used as a positive control drug. After successive administration for 4 weeks, Herba Epimedii could downregulate the expression of caspase-3 and increase the brain-derived neurotrophic factor level, as well as increase tyrosine hydroxylase activity in the substantia nigra of Parkinson's disease mouse models. Rhizoma Polygonaticould downregulate the expression of caspase-3 and FasL, and increase neural growth factor and brain-derived neurotrophic factor levels. Fructus Ligustn Lucidi could downregulate caspase-3 expression. Rhizoma Polygonati and Fructus Ligustn Lucidi did not produce obvious effects on tyrosine hydroxylase activity. Herba Epimedii and Fructus Ligustri Lucidi yielded similar effects on apoptosis-promoting factors to those elicited by selegiline. Herba Epimedii and Rhizoma Polygonati significantly increased the levels of neurotrophic factors compared with selegiline. Herba Epimedii significantly increased tyrosine hydroxylase activity compared with selegiline. It is indicated that the kidney-tonifying Chinese herbal preparation can downregulate the expression of apoptosis-promoting factors, increase neurotrophic factors levels in the substantia nigra and striatum, as well as increase tyrosine hydroxylase activity in the substantia nigra of Parkinson's disease mouse models, thereby exerting a stronger or similar neuroprotective effects compared with selegiline.
基金sponsored by the General Program of Yunnan Provincial Application Basic Research, No. 2008ZC109M
文摘To date, complex components of available reagents have been used for directional induction of neural stem cells into dopaminergic neurons, resulting in a poor ability to repeat experiments. This study sought to investigate whether a homogenate of the substantia nigra of adult rats and/or basic fibroblast growth factor could directionally induce neural stem cells derived from the subventricular zone of embryonic rats to differentiate into dopaminergic neurons. Tyrosine hydroxylase-positive cells were observed exclusively after induction with the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor for 48 hours in vitro. However, in the groups treated with homogenate supernatant or basic fibroblast growth factor alone, tyrosine hydroxylase expression was not observed. Moreover, the content of dopamine in the culture medium of subventricular zone neurons was significantly increased at 48 hours after induction with the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor. Experimental findings indicate that the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor could directionally induce neural stem cells derived from the subventricular zone of embryonic rats to differentiate into dopaminergic neurons in the substantia nigra with the ability to secrete dopamine.
基金provided by the Institutional Development Awards(IDe A)from the National Institute of General Medical Sciences of the National Institutes of Health under Grants No.P20GM103408 and P20GM109095provided by The Biomolecular Research Center at Boise State University
文摘The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination of movement by the brain's basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting in the cardinal motor deficits associated with Parkinson's disease. In order to fully understand the physiology of these key neurons and develop potential therapies for their loss, it is essential to determine if and how dopaminergic neurons are replenished in the adult brain. Recent work has presented evidence for adult neurogenesis of these neurons by Nestin+/Sox2 neural progenitor cells. We sought to further validate this finding and explore a potential atypical origin for these progenitor cells. Since neural progenitor cells have a proximal association with the vasculature of the brain and subsets of endothelial cells are Nestin+, we hypothesized that dopaminergic neural progenitors might share a common cell lineage. Therefore, we employed a VE-cadherin promoter-driven CREERT2:TIlox/Tlox transgenic mouse line to ablate the tyrosine hydroxylase gene from endothelial cells in adult animals. After 26 weeks, but not 13 weeks, following the genetic blockade of tyrosine hydroxylase expression in VE-cadherin+ cells, we observed a significant reduction in tyrosine hydroxylase+ neurons in the substantia nigra. The results from this genetic lineage tracing study suggest that dopaminergic neurons are replenished in adult mice by a VE-cadherin+ progenitor cell population potentially arising from an endothelial lineage.
文摘Cell replacement therapy utilizing mesenchymal stem cells as its main resource holds great promise for ultimate treatment of human neurological disorders.Parkinson's disease(PD)is a common,chronic neurodegenerative disorder hallmarked by localized degeneration of a specific set of dopaminergic neurons within a midbrain sub-region.The specific cell type and confined location of degenerating neurons make cell replacement therapy ideal for PD treatment since it mainly requires replenishment of lost dopaminergic neurons with fresh and functional ones.Endogenous as well as exogenous cell sources have been identified as candidate targets for cell replacement therapy in PD.In this review,umbilical cord mesenchymal stem cells(UCMSCs)are discussed as they provide an inexpensive unlimited reservoir differentiable towards functional dopaminergic neurons that potentially lead to long-lasting behavioral recovery in PD patients.We also present mi RNAs-mediated neuronal differentiation of UCMSCs.The UCMSCs bear a number of outstanding characteristics including their non-tumorigenic,low-immunogenic properties that make them ideal for cell replacement therapy purposes.Nevertheless,more investigations as well as controlled clinical trials are required to thoroughly confirm the efficacy of UCMSCs for therapeutic medical-grade applications in PD.