Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resol...Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resolution inversion offsets this limitation and is applied to seismic sedimentology to identify subtle traps under complex geologic conditions, thereby widening the applicable range of seismic sedimentology. In this paper, based on seismic sedimentology, seismic phase-controlled nonlinear random inversion is used to predict the sandy conglomerate reservoir of Es3 in the Chezhen depression in Shengli Oilfield. Thickness and sedimentary microfacies maps of sandy conglomerate bodies in several stages are presented and several subtle traps were predicted and verified by drilling.展开更多
This article analyses the procedure of exploration of the Tertiary subtle trap in Jiyang depression and divides the Tertiary subtle trap into 3 types (lithologic reservoir, stratigraphic reservoir and fractured reserv...This article analyses the procedure of exploration of the Tertiary subtle trap in Jiyang depression and divides the Tertiary subtle trap into 3 types (lithologic reservoir, stratigraphic reservoir and fractured reservoir) and 8 groups, then summarizes the common feature and founding discipline of the subtle trap and finds 4 accumulating modes including steep slope mode, depression mode, center anticline mode and gentle slope mode. Its main exploration methods are explicated from the viewpoint of reservoir geological modeling, description of recognizing traps and comprehensive evaluation of reservoir and so on.展开更多
The formation and distribution of hydrocarbon accumulations are jointly controlled by "stratigraphic facies" and "fluid potential", which can be abbreviated in "control of facies/potential on hydrocarbon accumula...The formation and distribution of hydrocarbon accumulations are jointly controlled by "stratigraphic facies" and "fluid potential", which can be abbreviated in "control of facies/potential on hydrocarbon accumulation". Facies and potential control the time-space distribution of hydrocarbon accumulation macroscopically and the petroliferous characteristics of hydrocarbon accumulation microscopically. Tectonic facies and sedimentary facies control the time-space distribution. Lithofacies and petrophysical facies control the petroliferous characteristics. Favorable facies and high porosity and permeability control hydrocarbon accumulation in the lacustrine rift basins in China. Fluid potential is represented by the work required, which comprises the work against gravity, pressure, interfacial energy and kinetic energy. Hydrocarbon migration and accumulation are controlled by the joint action of multiple driving forces, and are characterized by accumulation in the area of low potential. At the structural high, low geopotential energy caused by buoyancy control anticlinal reservoir. The formation oflithological oil pool is controlled by low interfacial energy caused by capillary force. Low compressive energy caused by overpressure and faulting activity control the formation of the faulted- block reservoir. Low geopotential energy of the basin margin caused by buoyancy control stratigraphic reservoir. The statistics of a large number of oil reservoirs show that favorable facies and low potential control hydrocarbon accumulation in the rift basin, where over 85% of the discovered hydrocarbon accumulations are distributed in the trap with favorable facies and low potentials. The case study showed that the prediction of favorable areas by application of the near source-favorable facies-low potential accumulation model correlated well with over 90% of the discovered oil pools' distribution of the middle section of the third member of the Shahejie Formation in the Dongying Depression, Bohai Bay Basin.展开更多
Deep basin gas (DBG) reservoirs, in view of the characteristics of their main parts containing gas, are a type of subtle stratigraphic lithologic traps. But they have different reservoir-forming principles, especially...Deep basin gas (DBG) reservoirs, in view of the characteristics of their main parts containing gas, are a type of subtle stratigraphic lithologic traps. But they have different reservoir-forming principles, especially in the distribution of oil, gas and water. DBG is characterized by gas-water invertion, namely the water located above the gas; however, normal non-anticline subtle reservoirs have normal distribution of gas and water, namely the water located under the gas. The theory of DBG broke the conventional exploration idea that gas is usually found in the high part of reservoir and water is under the gas. So, it provided a wide field and a new idea for the exploration of natural gas. Recently Ben E. Law (2002), in his article entitled "Basin-centered Gas Systems", discussed global DBG systemically. He listed 72 basins or areas containing known or suspected DBG, covering North America, South America, Europe, Asia-Pacific, South Asia, Middle East and Africa. Ordos basin, the Sichuan basin and the Jungar basin in China are presented and assumed to be of very high possibility. In China more attention has been paid to the research and exploration of DBG in the past years. The symposiums on DBG were held twice, in Guangzhou in 1998 and in Xi'an in 2000 respectively. In 2002 in particular, the publication of the book named Deep Basin Gas in China by Professor Wangtao indicated that China has entered a new stage in the research on DBG Meanwhile, it is more cheering that the exploration of DBG in the Ordos Basin has achieved remarkable success. Therefore, analyzing the exploration experiences and problems regarding the Ordos basin will promote the exploration and research of DBG in China.展开更多
基金sponsored by the 973 Program(Grant No.2006CB202306)Open Fund of the State Key Laboratory of Petroleum Resource and Prospecting(Grant No.PRPDX2008-07)
文摘Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resolution inversion offsets this limitation and is applied to seismic sedimentology to identify subtle traps under complex geologic conditions, thereby widening the applicable range of seismic sedimentology. In this paper, based on seismic sedimentology, seismic phase-controlled nonlinear random inversion is used to predict the sandy conglomerate reservoir of Es3 in the Chezhen depression in Shengli Oilfield. Thickness and sedimentary microfacies maps of sandy conglomerate bodies in several stages are presented and several subtle traps were predicted and verified by drilling.
文摘This article analyses the procedure of exploration of the Tertiary subtle trap in Jiyang depression and divides the Tertiary subtle trap into 3 types (lithologic reservoir, stratigraphic reservoir and fractured reservoir) and 8 groups, then summarizes the common feature and founding discipline of the subtle trap and finds 4 accumulating modes including steep slope mode, depression mode, center anticline mode and gentle slope mode. Its main exploration methods are explicated from the viewpoint of reservoir geological modeling, description of recognizing traps and comprehensive evaluation of reservoir and so on.
文摘The formation and distribution of hydrocarbon accumulations are jointly controlled by "stratigraphic facies" and "fluid potential", which can be abbreviated in "control of facies/potential on hydrocarbon accumulation". Facies and potential control the time-space distribution of hydrocarbon accumulation macroscopically and the petroliferous characteristics of hydrocarbon accumulation microscopically. Tectonic facies and sedimentary facies control the time-space distribution. Lithofacies and petrophysical facies control the petroliferous characteristics. Favorable facies and high porosity and permeability control hydrocarbon accumulation in the lacustrine rift basins in China. Fluid potential is represented by the work required, which comprises the work against gravity, pressure, interfacial energy and kinetic energy. Hydrocarbon migration and accumulation are controlled by the joint action of multiple driving forces, and are characterized by accumulation in the area of low potential. At the structural high, low geopotential energy caused by buoyancy control anticlinal reservoir. The formation oflithological oil pool is controlled by low interfacial energy caused by capillary force. Low compressive energy caused by overpressure and faulting activity control the formation of the faulted- block reservoir. Low geopotential energy of the basin margin caused by buoyancy control stratigraphic reservoir. The statistics of a large number of oil reservoirs show that favorable facies and low potential control hydrocarbon accumulation in the rift basin, where over 85% of the discovered hydrocarbon accumulations are distributed in the trap with favorable facies and low potentials. The case study showed that the prediction of favorable areas by application of the near source-favorable facies-low potential accumulation model correlated well with over 90% of the discovered oil pools' distribution of the middle section of the third member of the Shahejie Formation in the Dongying Depression, Bohai Bay Basin.
文摘Deep basin gas (DBG) reservoirs, in view of the characteristics of their main parts containing gas, are a type of subtle stratigraphic lithologic traps. But they have different reservoir-forming principles, especially in the distribution of oil, gas and water. DBG is characterized by gas-water invertion, namely the water located above the gas; however, normal non-anticline subtle reservoirs have normal distribution of gas and water, namely the water located under the gas. The theory of DBG broke the conventional exploration idea that gas is usually found in the high part of reservoir and water is under the gas. So, it provided a wide field and a new idea for the exploration of natural gas. Recently Ben E. Law (2002), in his article entitled "Basin-centered Gas Systems", discussed global DBG systemically. He listed 72 basins or areas containing known or suspected DBG, covering North America, South America, Europe, Asia-Pacific, South Asia, Middle East and Africa. Ordos basin, the Sichuan basin and the Jungar basin in China are presented and assumed to be of very high possibility. In China more attention has been paid to the research and exploration of DBG in the past years. The symposiums on DBG were held twice, in Guangzhou in 1998 and in Xi'an in 2000 respectively. In 2002 in particular, the publication of the book named Deep Basin Gas in China by Professor Wangtao indicated that China has entered a new stage in the research on DBG Meanwhile, it is more cheering that the exploration of DBG in the Ordos Basin has achieved remarkable success. Therefore, analyzing the exploration experiences and problems regarding the Ordos basin will promote the exploration and research of DBG in China.