In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features refle...In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features reflecting fatigue and one indirect vehicle behavior feature indicating fatigue are considered. Meanwhile, T-S fuzzy neural network(TSFNN)is adopted to recognize the driving fatigue of drivers. For the structure identification of the TSFNN, subtractive clustering(SC) is used to confirm the fuzzy rules and their correlative parameters. Moreover, the particle swarm optimization (PSO)algorithm is improved to train the TSFNN. Simulation results and experiments on vehicles show that the proposed algorithm can effectively improve the convergence speed and the recognition accuracy of the TSFNN, as well as enhance the correct rate of driving fatigue detection.展开更多
This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the pr...This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the proposed method which modifies the subtractive clustering. The modified clustering algorithm proposes a new definition of distance for multi-face detection, and its key parameters can be predetermined adaptively by statistical information of face objects in the image. Downsampling is employed to reduce the computation of clustering and speed up the process of the proposed method. The effectiveness of the proposed method is illustrated by three experiments.展开更多
A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst...A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.展开更多
The analysis of environmental daily evaporation plays a vital role in the field of agriculture. It is very essential to know the daily evaporation rate of a particular area for proper cultivation. So, we need a standa...The analysis of environmental daily evaporation plays a vital role in the field of agriculture. It is very essential to know the daily evaporation rate of a particular area for proper cultivation. So, we need a standard prediction model which can predict the daily evaporation. In this paper, we use subtractive clustering and Fuzzy logic to predict daily evaporation of a particular area. The input data used in the paper are: maximum soil temperature, average soil temperature, average air temperature, minimum relative humidity, average relative humidity and total wind, which are related to the daily evaporation of a particular area as the output. The accuracy of output of the paper is compared with the previous model of Artificial Neural Network (ANN) and we get better result towards the target value. The finding of the paper is applicable in environmental science, geological science and agriculture.展开更多
Aimed at studying normali zed radial basis function network (NRBFN), this paper introduces the subtractiv e clustering based on a mountain function to construct the initial structure of NR BFN, adopts singular value ...Aimed at studying normali zed radial basis function network (NRBFN), this paper introduces the subtractiv e clustering based on a mountain function to construct the initial structure of NR BFN, adopts singular value decomposition (SVD) to analyze the relationship betwe en neural nodes of the hidden layer and singular values, cumulative contribution ratio, index vector, and optimizes the structure of NRBFN. Finally, simulation and performance comparison show that the algorithm is feasible and effective.展开更多
Automatic identification and detection of fruit on trees by machine vision is the basis of developing automatic harvesting robots in agriculture.The occlusion of branches,leaves and other fruits in canopy images will ...Automatic identification and detection of fruit on trees by machine vision is the basis of developing automatic harvesting robots in agriculture.The occlusion of branches,leaves and other fruits in canopy images will affect the accuracy of fruit detection.To provide a scientific and reliable technical guidance for fruit harvesting robots,a method using point cloud images was proposed in this study to detect red fruits to overcome the impact of occlusion on detection.Firstly,the fruit regions were segmented from a tree’s point cloud by applying the color threshold of red and green.Then,the noise in fruit point clouds was removed with sparse outlier removal.Finally,the point cloud of each fruit was detected and counted based on the subtractive clustering algorithm.For the sweet pepper dataset,the true positive rate(TPR)is 90.69%and the false positive rate(FPR)is 6.97%for all fruits that are at least partially visible in the scene.展开更多
Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement...Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement is usually implemented to adjust the design during the whole construction,and consequently deadly hazards can be prevented.In this study,a new fuzzy model capable of predicting the diameter convergences of a high-speed railway tunnel was developed on the basis of adaptive neuro-fuzzy inference system(ANFIS) approach.The proposed model used more than 1 000 datasets collected from two different tunnels,i.e.Daguan tunnel No.2 and Yaojia tunnel No.1,which are part of a tunnel located in Hunan Province,China.Six Takagi-Sugeno fuzzy inference systems were constructed by using subtractive clustering method.The data obtained from Daguan tunnel No.2 were used for model training,while the data from Yaojia tunnel No.1 were employed to evaluate the performance of the model.The input parameters include surrounding rock masses(SRM) rating index,ground engineering conditions(GEC) rating index,tunnel overburden(H),rock density(?),distance between monitoring station and working face(D),and elapsed time(T).The model’s performance was assessed by the variance account for(VAF),root mean square error(RMSE),mean absolute percentage error(MAPE) as well as the coefficient of determination(R2) between measured and predicted data as recommended by many researchers.The results showed excellent prediction accuracy and it was suggested that the proposed model can be used to estimate the tunnel convergence and convergence velocity.展开更多
In precision agriculture,the accurate segmentation of crops and weeds in agronomic images has always been the center of attention.Many methods have been proposed but still the clean and sharp segmentation of crops and...In precision agriculture,the accurate segmentation of crops and weeds in agronomic images has always been the center of attention.Many methods have been proposed but still the clean and sharp segmentation of crops and weeds is a challenging issue for the images with a high presence of weeds.This work proposes a segmentation method based on the combination of semantic segmentation and K-means algorithms for the segmenta-tion of crops and weeds in color images.Agronomic images of two different databases were used for the segmentation algorithms.Using the thresholding technique,everything except plants was removed from the images.Afterward,semantic segmentation was applied using U-net followed by the segmentation of crops and weeds using the K-means subtractive algorithm.The comparison of segmentation performance was made for the proposed method and K-Means clustering and superpixels algorithms.The proposed algorithm pro-vided more accurate segmentation in comparison to other methods with the maximum accuracy of equivalent to 99.19%.Based on the confusion matrix,the true-positive and true-negative values were 0.9952 and 0.8985 representing the true classification rate of crops and weeds,respectively.The results indicated that the proposed method successfully provided accurate and convincing results for the segmentation of crops and weeds in the images with a complex presence of weeds.展开更多
基金The National Key Technologies R & D Program during the 11th Five-Year Plan Period(No.2009BAG13A04)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861061)the Transportation Science Research Project of Jiangsu Province(No.08X09)
文摘In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features reflecting fatigue and one indirect vehicle behavior feature indicating fatigue are considered. Meanwhile, T-S fuzzy neural network(TSFNN)is adopted to recognize the driving fatigue of drivers. For the structure identification of the TSFNN, subtractive clustering(SC) is used to confirm the fuzzy rules and their correlative parameters. Moreover, the particle swarm optimization (PSO)algorithm is improved to train the TSFNN. Simulation results and experiments on vehicles show that the proposed algorithm can effectively improve the convergence speed and the recognition accuracy of the TSFNN, as well as enhance the correct rate of driving fatigue detection.
文摘This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the proposed method which modifies the subtractive clustering. The modified clustering algorithm proposes a new definition of distance for multi-face detection, and its key parameters can be predetermined adaptively by statistical information of face objects in the image. Downsampling is employed to reduce the computation of clustering and speed up the process of the proposed method. The effectiveness of the proposed method is illustrated by three experiments.
基金Project(61473298)supported by the National Natural Science Foundation of ChinaProject(2015QNA65)supported by Fundamental Research Funds for the Central Universities,China
文摘A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.
文摘The analysis of environmental daily evaporation plays a vital role in the field of agriculture. It is very essential to know the daily evaporation rate of a particular area for proper cultivation. So, we need a standard prediction model which can predict the daily evaporation. In this paper, we use subtractive clustering and Fuzzy logic to predict daily evaporation of a particular area. The input data used in the paper are: maximum soil temperature, average soil temperature, average air temperature, minimum relative humidity, average relative humidity and total wind, which are related to the daily evaporation of a particular area as the output. The accuracy of output of the paper is compared with the previous model of Artificial Neural Network (ANN) and we get better result towards the target value. The finding of the paper is applicable in environmental science, geological science and agriculture.
文摘Aimed at studying normali zed radial basis function network (NRBFN), this paper introduces the subtractiv e clustering based on a mountain function to construct the initial structure of NR BFN, adopts singular value decomposition (SVD) to analyze the relationship betwe en neural nodes of the hidden layer and singular values, cumulative contribution ratio, index vector, and optimizes the structure of NRBFN. Finally, simulation and performance comparison show that the algorithm is feasible and effective.
基金This research was financially supported by the National Natural Science Foundation of China(Grant No.61772240,61775086)the Fundamental Research Funds for the Central Universities(JUSRP51730A)as well as sponsored by the 111 Project(B12018).
文摘Automatic identification and detection of fruit on trees by machine vision is the basis of developing automatic harvesting robots in agriculture.The occlusion of branches,leaves and other fruits in canopy images will affect the accuracy of fruit detection.To provide a scientific and reliable technical guidance for fruit harvesting robots,a method using point cloud images was proposed in this study to detect red fruits to overcome the impact of occlusion on detection.Firstly,the fruit regions were segmented from a tree’s point cloud by applying the color threshold of red and green.Then,the noise in fruit point clouds was removed with sparse outlier removal.Finally,the point cloud of each fruit was detected and counted based on the subtractive clustering algorithm.For the sweet pepper dataset,the true positive rate(TPR)is 90.69%and the false positive rate(FPR)is 6.97%for all fruits that are at least partially visible in the scene.
基金support of China University of Geosciences (Wuhan)
文摘Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement is usually implemented to adjust the design during the whole construction,and consequently deadly hazards can be prevented.In this study,a new fuzzy model capable of predicting the diameter convergences of a high-speed railway tunnel was developed on the basis of adaptive neuro-fuzzy inference system(ANFIS) approach.The proposed model used more than 1 000 datasets collected from two different tunnels,i.e.Daguan tunnel No.2 and Yaojia tunnel No.1,which are part of a tunnel located in Hunan Province,China.Six Takagi-Sugeno fuzzy inference systems were constructed by using subtractive clustering method.The data obtained from Daguan tunnel No.2 were used for model training,while the data from Yaojia tunnel No.1 were employed to evaluate the performance of the model.The input parameters include surrounding rock masses(SRM) rating index,ground engineering conditions(GEC) rating index,tunnel overburden(H),rock density(?),distance between monitoring station and working face(D),and elapsed time(T).The model’s performance was assessed by the variance account for(VAF),root mean square error(RMSE),mean absolute percentage error(MAPE) as well as the coefficient of determination(R2) between measured and predicted data as recommended by many researchers.The results showed excellent prediction accuracy and it was suggested that the proposed model can be used to estimate the tunnel convergence and convergence velocity.
文摘In precision agriculture,the accurate segmentation of crops and weeds in agronomic images has always been the center of attention.Many methods have been proposed but still the clean and sharp segmentation of crops and weeds is a challenging issue for the images with a high presence of weeds.This work proposes a segmentation method based on the combination of semantic segmentation and K-means algorithms for the segmenta-tion of crops and weeds in color images.Agronomic images of two different databases were used for the segmentation algorithms.Using the thresholding technique,everything except plants was removed from the images.Afterward,semantic segmentation was applied using U-net followed by the segmentation of crops and weeds using the K-means subtractive algorithm.The comparison of segmentation performance was made for the proposed method and K-Means clustering and superpixels algorithms.The proposed algorithm pro-vided more accurate segmentation in comparison to other methods with the maximum accuracy of equivalent to 99.19%.Based on the confusion matrix,the true-positive and true-negative values were 0.9952 and 0.8985 representing the true classification rate of crops and weeds,respectively.The results indicated that the proposed method successfully provided accurate and convincing results for the segmentation of crops and weeds in the images with a complex presence of weeds.