Naturally occurring plants in agroecosystem evidently play an important role in ecosystem stability. Field studies on the ecological effects of native plants conserved in orchard and their resistance to adverse climat...Naturally occurring plants in agroecosystem evidently play an important role in ecosystem stability. Field studies on the ecological effects of native plants conserved in orchard and their resistance to adverse climatic stress, and soil erosion were conducted from 1998 to 2001 in a newly developed Changshan-huyou (Citrus changshan-huyou Y.B. Chang) orchard. The experimental area covered 150 ha in typical red soil hilly region in southeastern China. The experimental design was a randomized complete block with six combinations of twelve plant species with four replications. All species used were native in the orchard. Plots were 15×8m^2 and separated by 2m buffer strips. Precipitation, soil erosion in rainstorm days and aboveground biomass of plant community when rainstorm days ended, soil temperature and moisture under various plant covers during seasonal megathermal drought period, antiscourability of soil with different root density under various simulated rainfalls were measured. Plant cover significantly decreased the daily highest and mean soil temperature and its daily variation in hot-drought season, but there was no significant difference of the alleviation among various plant covers. Plant covers significantly increased the soil moisture in seasonal megathermal drought period. Better moisture maintenance and soil erosion reduction was found when the plant species numbers in cover plant communities increased from one to eight. Higher root density in plant communities with higher species richness increased significantly the antiscourability of the soil. It was suggested that conserving plant communities with diversified native species could produce the best positive ecological effects on citrus orchard ecosystem stability.展开更多
Temporal variability in soil CO2 emission from an orchard was measured using a dynamic open-chamber system for measuring soil CO2 effiux in Heshan Guangdong Province, in the lower subtropical area of China. Intensive ...Temporal variability in soil CO2 emission from an orchard was measured using a dynamic open-chamber system for measuring soil CO2 effiux in Heshan Guangdong Province, in the lower subtropical area of China. Intensive measurements were conducted for a period of 12 months. Soil CO2 emissions were also modeled by multiple regression analysis from daily air temperature, dry-bulb saturated vapor pressure, relative humidity, atmospheric pressure, soil moisture, and soil temperature. Data was analyzed based on soil moisture levels and air temperature with annual data being grouped into either hot-humid season or relatively cool season based on the precipitation patterns. This was essential in order to acquire simplified exponential models for parameter estimation. Minimum and maximum daily mean soil CO2 effiux rates were observed in November and July, with respective rates of 1.98 ± 0.66 and 11.04 ± 0.96 μmol m^-2 s^-1 being recorded. Annual average soil CO2 emission (FCO2) was 5.92 μmol m^-2 s^-1. Including all the weather variables into the model helped to explain 73.9% of temporal variability in soil CO2 emission during the measurement period. Soil CO2 effiux increased with increasing soil temperature and soil moisture. Preliminary results showed that Q10, which is defined as the difference in respiration rates over a 10 ℃ interval, was partly explained by fine root biomass. Soil temperature and soil moisture were the dominant factors controlling soil CO2 effiux and were regarded as the driving variables for CO2 production in the soil. Including these two variables in regression models could provide a useful tool for predicting the variation of CO2 emission in the commercial forest Soils of South China .展开更多
As shown in comparison and study of the HIRS-Tb12 data and conventional data, temperature, humidity and vertical motion are structured differently in the Southern and Northern Hemispheres, which are well depicted with...As shown in comparison and study of the HIRS-Tb12 data and conventional data, temperature, humidity and vertical motion are structured differently in the Southern and Northern Hemispheres, which are well depicted with the HIRS-Tb12 data. When high pressures rapidly decrease over the regions of South China Sea and Arabian Sea with the HIRS-Tb12 less than 200 W/m2, monsoons will set off in the South China Sea, Arabian Sea and Bay of Bengal, respectively. From a year of significant drought to one of significant floods, the trend of evolution is significantly different in the downdraft areas of the subtropical highs between the two hemispheres.展开更多
There are 71 species in the shrub layer of the Cunninghamia lanceolata plantation after natural succession.The species richness and diversity have increased with slight anthropogenic disturbance.The status and functio...There are 71 species in the shrub layer of the Cunninghamia lanceolata plantation after natural succession.The species richness and diversity have increased with slight anthropogenic disturbance.The status and function of understory woody species were judged by the analysis of the important value(IV).χ2 statistics and r test were used for testing the significance of interspecific association and correlation among 25 main understory woody plants selected from the woody population.The results clearly showed their interspecific relationships and their differences in resource utilization.Species-pairs of positive association were in the majority.Most species were accommodated in the shady habitat.There was a positive correlation between the IV of the species and the interspecific association.The higher the IV of the species,the closer and more significant was the interspecific association.Based on analytical results of interspecific association and correlation,25 woody plants in the shrub layer could be divided into four ecological species groups:I.Ficus hispida+Antidesma bunius+Mallotus barbatus+Ficus cunia+Saurauia tristyla+Mallotus philippinensis+Maesa japonica+Ficus hirta+Alchornea rugosa+Ficus fulva+Mallotus apelta;II.Cudrania tricuspidata+Schefflera octophylla;III.Cunninghamia lanceolata+Clerodendron cytophyllum+Millettia semicastrata+Randia spinosa+Litsea cubeba+Litsea pungens;IV.Ardisia japonica+Psychotria rubra+Vitex quinata+Cephalanthus occidentalis+Pithecellobium lucidum+Mycetia sinensis.If species group III or II is the advantaged species in the shrub layer,the community would change from a coniferous forest to a sparse evergreen broad-leaved forest.For group IV,the community would be relatively stable.For group I,the coniferous forest would be mixed with coniferous-broad leaved forest.The classification of ecological species groups would provide a theoretical basis on judging its ecological function,adjusting the stand structure of the plantation and directing the suitable natural vegetation type through the close-natural restoration process.展开更多
基金Projects (Nos. 30228005, 39870143 and 30030030) supported by the National Natural Science Foundation of China Author for correspondence
文摘Naturally occurring plants in agroecosystem evidently play an important role in ecosystem stability. Field studies on the ecological effects of native plants conserved in orchard and their resistance to adverse climatic stress, and soil erosion were conducted from 1998 to 2001 in a newly developed Changshan-huyou (Citrus changshan-huyou Y.B. Chang) orchard. The experimental area covered 150 ha in typical red soil hilly region in southeastern China. The experimental design was a randomized complete block with six combinations of twelve plant species with four replications. All species used were native in the orchard. Plots were 15×8m^2 and separated by 2m buffer strips. Precipitation, soil erosion in rainstorm days and aboveground biomass of plant community when rainstorm days ended, soil temperature and moisture under various plant covers during seasonal megathermal drought period, antiscourability of soil with different root density under various simulated rainfalls were measured. Plant cover significantly decreased the daily highest and mean soil temperature and its daily variation in hot-drought season, but there was no significant difference of the alleviation among various plant covers. Plant covers significantly increased the soil moisture in seasonal megathermal drought period. Better moisture maintenance and soil erosion reduction was found when the plant species numbers in cover plant communities increased from one to eight. Higher root density in plant communities with higher species richness increased significantly the antiscourability of the soil. It was suggested that conserving plant communities with diversified native species could produce the best positive ecological effects on citrus orchard ecosystem stability.
基金the Natural Science Doctorial Foundation of Guangdong Province, China (No.4300613)the National Natural Science Foundation of China (No.30200035)+1 种基金the Chinese Ecosystem Research Network (CERN)apost-doctoral fellowship from the Ministry of Education of the People’s Republic of China
文摘Temporal variability in soil CO2 emission from an orchard was measured using a dynamic open-chamber system for measuring soil CO2 effiux in Heshan Guangdong Province, in the lower subtropical area of China. Intensive measurements were conducted for a period of 12 months. Soil CO2 emissions were also modeled by multiple regression analysis from daily air temperature, dry-bulb saturated vapor pressure, relative humidity, atmospheric pressure, soil moisture, and soil temperature. Data was analyzed based on soil moisture levels and air temperature with annual data being grouped into either hot-humid season or relatively cool season based on the precipitation patterns. This was essential in order to acquire simplified exponential models for parameter estimation. Minimum and maximum daily mean soil CO2 effiux rates were observed in November and July, with respective rates of 1.98 ± 0.66 and 11.04 ± 0.96 μmol m^-2 s^-1 being recorded. Annual average soil CO2 emission (FCO2) was 5.92 μmol m^-2 s^-1. Including all the weather variables into the model helped to explain 73.9% of temporal variability in soil CO2 emission during the measurement period. Soil CO2 effiux increased with increasing soil temperature and soil moisture. Preliminary results showed that Q10, which is defined as the difference in respiration rates over a 10 ℃ interval, was partly explained by fine root biomass. Soil temperature and soil moisture were the dominant factors controlling soil CO2 effiux and were regarded as the driving variables for CO2 production in the soil. Including these two variables in regression models could provide a useful tool for predicting the variation of CO2 emission in the commercial forest Soils of South China .
基金Essential Scientific Research Project in the national 9th five-year development plan (96-908-05-06-08)
文摘As shown in comparison and study of the HIRS-Tb12 data and conventional data, temperature, humidity and vertical motion are structured differently in the Southern and Northern Hemispheres, which are well depicted with the HIRS-Tb12 data. When high pressures rapidly decrease over the regions of South China Sea and Arabian Sea with the HIRS-Tb12 less than 200 W/m2, monsoons will set off in the South China Sea, Arabian Sea and Bay of Bengal, respectively. From a year of significant drought to one of significant floods, the trend of evolution is significantly different in the downdraft areas of the subtropical highs between the two hemispheres.
基金This study was partially supported by the Forestry College,Guangxi University,Experiment Center of Tropical Forestry,Chinese Academy of Forestry。
文摘There are 71 species in the shrub layer of the Cunninghamia lanceolata plantation after natural succession.The species richness and diversity have increased with slight anthropogenic disturbance.The status and function of understory woody species were judged by the analysis of the important value(IV).χ2 statistics and r test were used for testing the significance of interspecific association and correlation among 25 main understory woody plants selected from the woody population.The results clearly showed their interspecific relationships and their differences in resource utilization.Species-pairs of positive association were in the majority.Most species were accommodated in the shady habitat.There was a positive correlation between the IV of the species and the interspecific association.The higher the IV of the species,the closer and more significant was the interspecific association.Based on analytical results of interspecific association and correlation,25 woody plants in the shrub layer could be divided into four ecological species groups:I.Ficus hispida+Antidesma bunius+Mallotus barbatus+Ficus cunia+Saurauia tristyla+Mallotus philippinensis+Maesa japonica+Ficus hirta+Alchornea rugosa+Ficus fulva+Mallotus apelta;II.Cudrania tricuspidata+Schefflera octophylla;III.Cunninghamia lanceolata+Clerodendron cytophyllum+Millettia semicastrata+Randia spinosa+Litsea cubeba+Litsea pungens;IV.Ardisia japonica+Psychotria rubra+Vitex quinata+Cephalanthus occidentalis+Pithecellobium lucidum+Mycetia sinensis.If species group III or II is the advantaged species in the shrub layer,the community would change from a coniferous forest to a sparse evergreen broad-leaved forest.For group IV,the community would be relatively stable.For group I,the coniferous forest would be mixed with coniferous-broad leaved forest.The classification of ecological species groups would provide a theoretical basis on judging its ecological function,adjusting the stand structure of the plantation and directing the suitable natural vegetation type through the close-natural restoration process.