The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captu...The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captured by seasonal predictions,a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China.However,the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown.Here,the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China,the amplitude of which became the strongest since 1979.The meridional dipole pattern is two nodes of the Pacific–Japan pattern.To investigate the predictability of the WPSH variation,a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted.The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations.Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific.The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña,which is skillfully predicted by the model.The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations,which are not initialized in the simulations.The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0%and 72.0%,respectively.展开更多
By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The...By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The influence of the sea surface temperature(SST) and outgoing longwave radiation(OLR) on the Northeast cold vortex and subtropical high was studied.As was shown in the results,in summer,there was a positive correlation between the Northeast cold vortex and the subtropical high,and an anti-phase relationship existed between the threshold characteristic line of GMS-SST=28 ℃ and the height index of the Northeast cold vortex and the subtropical high.With the gradual northward moving of the threshold characteristic line,the subtropical high was weakening,and the Northeast cold vortex was increasing and strengthening.展开更多
The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR ...The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR reanalysis data and the index of intensity of western Pacific subtropical high,the seasonal variations of subtropical high and precipitation in eastern China during the past decades are discussed.The relationships between them also are discussed by correlation and composite analyses.The results show that the intensity of subtropical high,which has significantly strengthened in the recent 50 years,especially in spring,autumn and winter,has notable impact on the simultaneous rainfall in the eastern region of China for all seasons,especially in winter.展开更多
Using the relative vorticity averaged over a certain area, a new index for measuring the longitudinal position of the subtropical high (SH) in the western Pacific is proposed to avoid the increasing trend of heights i...Using the relative vorticity averaged over a certain area, a new index for measuring the longitudinal position of the subtropical high (SH) in the western Pacific is proposed to avoid the increasing trend of heights in the previous indices based on geopotential height. The years of extreme westward and eastward extension of SH using the new index are in good agreement with those defined by height index. There exists a distinct difference in large-scale circulation between the eastward and westward extension of SH under the new definition, which includes not only the circulation in the middle latitudes but also the flow in the lower latitudes. It seems that when the SH extends far to the east (west), the summer monsoon in the South China Sea is stronger (weaker) and established earlier (later). In addition, there exists a good relationship between the longitudinal position of SH and the summer rainfall in China. A remarkable negative correlation area appears in the Changjiang River valley, indicating that when the SH extends westward (eastward), the precipitation in that region increases (decreases). A positive correlation region is found in South China, showing the decrease of rainfall when the SH extends westward. On the other hand, the rainfall is heavier when the SH retreats eastward. However, the anomalous longitudinal position of SH is not significantly related to the precipitation in North China. The calculation of correlation coefficients between the index of longitudinal position of SH and surface temperature in China shows that a large area of positive values, higher than 0.6 in the center, covers the whole of North China, even extending eastward to the Korean Peninsula and Japan Islands when using NCEP/NCAR reanalysis data to do the correlation calculation. This means that when the longitudinal position of the SH withdraws eastward in summer, the temperature over North China is higher. On the other hand, when it moves westward, the temperature there is lower. This could explain the phenomenon of the seriously high temperatures over North China during recent summers, because the longitudinal position of SH in recent summers was located far away from the Asian continent. Another region with large negative correlation coefficients is found in South China.展开更多
Using the data of 500 hPa geopotential height from 1951 to 1995, SST roughly in the same period and OLR data from 1974 to 1994, the relation between the anomalies of subtropical high (STH for short) and the tropical c...Using the data of 500 hPa geopotential height from 1951 to 1995, SST roughly in the same period and OLR data from 1974 to 1994, the relation between the anomalies of subtropical high (STH for short) and the tropical circulations including the Asian monsoon as well as the convective activity are studied. In order to study the physical process of the air-sea interaction related to STH anomaly, the correlation of STH with SST at various sea areas, lagged and simultaneous, has been calculated. Comparing the difference of OLR, wind fields, vertical circulations and SST anomalies in the strong and weak STH, we investigate the characteristics of global circulations and the SST distributions related to the anomalous STH at the western Pacific both in winter and summer. Much attention has been paid to the study of the air-sea interaction and the relationship between the East Asian monsoon and the STH in the western Pacific. A special vertical circulation, related to the STH anomalies is found, which connects the monsoon current to the west and the vertical flow influenced by the SST anomaly in the tropical eastern Pacific.展开更多
Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal po...Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal position of the subtropical high in the western Pacific (SHWP) in the pre-rainy season in South China and associated circulation and precipitation are studied. Furthermore, the relationship between SHWP and SST and the eastern Asian winter monsoon is also investigated. Associated with the anomalous longitudinal position of SHWP in the pre-rainy season in South China, the flow patterns in both the middle and lower latitudes are different. The circulation anomalies greatly influence the precipitation in the pre-rainy season in South China. When the SHWP is in a west position (WP), the South China quasi-stationary front is stronger with more abundant precipitation there. However, when the SHWP is in an east position (EP), a weaker front appears with a shortage of precipitation there. There exists a good relationship between the longitudinal position of SHWP and SST in the tropical region. A negative correlation can be found both in the central and eastern tropical Pacific and the Indian Ocean. This means that the higher (lower) SST there corresponds to a west (east) position of SHWP. This close relationship can be found even in the preceding autumn and winter. A positive correlation appears in the western and northern Pacific and large correlation coefficient values also occur in the preceding autumn and winter. A stronger eastern Asian winter monsoon will give rise to cooler SSTs in the Kuroshio and the South China Sea regions and it corresponds to negative SST anomaly (SSTA) in the central and eastern Pacific and positive SSTA in the western Pacific in winter and the following spring. The whole tropical SSTA pattern, that is, positive (negative) SSTA in the central and eastern Pacific and negative (positive) SSTA in the western Pacific, is favorable to the WP (EP) of SHWP.展开更多
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th...The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.展开更多
In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This re...In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geoslrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America.展开更多
Both 1981 and 2013 were weak La Nifia years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the westem Pacific subtropical high (WPSH) during August exhibited an opposite anomaly ...Both 1981 and 2013 were weak La Nifia years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the westem Pacific subtropical high (WPSH) during August exhibited an opposite anomaly in the two years. A comparison indicates that, in the absence of a strong SST anomaly in the tropics, the cold advection from Eurasian high latitudes and the convection of the western Pacific warm pool play important roles in influencing the strength and position of the WPSH in August. In August 1981, the spatial pattern of 500 hPa geopotential height was characterized by a meridional circulation with a strong ridge in the Ural Mountains and a deep trough in Siberia, which provided favorable conditions for cold air invading into the lower latitudes. Accordingly, the geopotential height to the north of the WPSH was reduced by the cold advection anomaly from high latitudes, resulting in an eastward retreat of the WPSH. Moreover, an anomalous cyclonic circulation in the subtropical western Pacific, excited by enhanced warm pool convection, also contributed to the eastward retreat of the WPSH. By contrast, the influence from high latitudes was relatively weak in August 2013 due to a zonal circulation pattern over Eurasia, and the anomalous anticyclonic circulation induced by suppressed warm pool convection also facilitated the westward extension of the WPSH. Therefore, the combined effects of the high latitude and tropical circulations may contribute a persistent anomaly of the WPSH in late summer, despite the tropical SST anomaly being weak.展开更多
In the summer of 2013, an unprecedented heat wave was experienced over a vast area of southern China. The great areal extent, duration, and strength of this high temperature are very rare. For the 2013 hot spell, the ...In the summer of 2013, an unprecedented heat wave was experienced over a vast area of southern China. The great areal extent, duration, and strength of this high temperature are very rare. For the 2013 hot spell, the major and direct influence mostly came from the anomaly of the western Pacific subtropical high(WPSH). The abnormally strong and stable WPSH was associated with specific surrounding circulations. The eastward extension of a stronger Qinghai-Xizang high favored the westward extension of the WPSH. The weaker cold air activity from the polar region led to the northward shift of the WPSH and helped it to remain stable. In the tropics, the western segment of the ITCZ was abnormally strong in the period, and supported the maintenance of the WPSH from the south. In addition, the interdecadal variation of the WPSH provided a decadal background for the anomaly variation of the WPSH that summer.展开更多
Western North Pacific Subtropical High is a very important atmospheric circulation system influencing the summer climate over eastern China. Its interdecadal change is analyzed in this study. There is a significant de...Western North Pacific Subtropical High is a very important atmospheric circulation system influencing the summer climate over eastern China. Its interdecadal change is analyzed in this study. There is a significant decadal shift in about 1979/1980. Since 1980, the Western North Pacific Subtropical High has enlarged, intensified, and shifted southwestward. This change gives rise to an anti-cyclonic circulation anomaly over the region from the South China Sea to western Pacific and thus causes wet anomalies over the Yangtze River valley. During the summers of 1980-1999, the precipitation is 63.9 mm above normal, while during 1958-1979 it is 27.3 mm below normal. The difference is significant at the 99% confidence level as a t-test shown. The southwestward expanding of the Western North Pacific Subtropical High also leads to a significant warming in southern China, during 1980-1999 the summer mean temperature is 0.37篊 warmer than that of the period 1958-1979. The strong warming is primarily due to the clearer skies associated with the stronger downward air motion as the Western North Pacific Subtropical High expanding to the west and controlling southern China. It is also found that the relative percentage of tropical cyclones in the regions south of 20篘 is decreasing since the 1980s, but in the regions north of 20篘 that is increasing at the same time. The Western North Pacific Subtropical High responds significantly to sea surface temperature of the tropical eastern Pacific with a lag of one-two seasons and simultaneously to sea surface temperature of the tropical Indian Ocean. The changes in the sea surface temperatures are mainly responsible for the interdecadal variability of the Western North Pacific Subtropical High.展开更多
Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical S...Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical SST anomalies. The authors show that the northward jumps, especially the second jump, exhibited remarkable interannual variability. In addition, the authors find that the two northward jumps were mutually independent and were influenced by the SST anomalies in the different regions of the tropical Pacific. The first jump was positively correlated with the SST anomalies in the tropical central Pacific from the preceding winter to June. In contrast, the second jump was positively related to ENSO in the preceding winter, but this correlation tended to weaken with the decay of ENSO and disappeared in July. Instead, a positive correlation was found in the Indian Ocean. We therefore suggest that ENSO plays an indirect role in the second jump through the capacitor effect of the Indian Ocean.展开更多
The anomalous behavior of the western Pacific subtropical high (WPSH) in E1 Nifio developing summer is studied based on the composite results of eight major E1 Nifio events during 1979-2013. It is shown that the WPS...The anomalous behavior of the western Pacific subtropical high (WPSH) in E1 Nifio developing summer is studied based on the composite results of eight major E1 Nifio events during 1979-2013. It is shown that the WPSH tends to retreat eastwards with weak intensity during the developing summer. The anomaly exhibits an intraseasonal variation with a weaker anomaly in June and July and a stronger anomaly in August, indicating that different underlying physical mechanisms may be responsible for the anomalous WPSH during early and late summer periods. In June and July, owing to the cold advection anomaly characterized as a weak northerly anomaly from high latitudes, geopotential height in East Asia is reduced and the WPSH tends to retreat eastwards slightly. By contrast, enhanced convection over the warm pool in August makes the atmosphere more sensitive to E1 Nifio forcing. Consequently, a cyclonic anomaly in the western Pacific is induced, which is consistent with the seasonal march of atmospheric circulation from July to August. Accordingly, geopotential height in the western Pacific is reduced significantly, and the WPSH tends to retreat eastwards remarkably in August. Different from the developing summer, geopotential height in the decaying summer over East Asia and the western Pacific tends to enhance and extend northwards from June to August consistently, reaching the maximum anomaly in August. Therefore, the seasonal march plays an important role in the WPSH anomaly for both the developing and decaying summer.展开更多
The paper investigates the vertical circulation structure of the western Pacific subtropical high (STH) and its interannual variation features in relation tO East Asian subtropical summer monsoon and external thermal ...The paper investigates the vertical circulation structure of the western Pacific subtropical high (STH) and its interannual variation features in relation tO East Asian subtropical summer monsoon and external thermal forcing by using the high-resolution and good-quality observations from the 1998 South China Sea Summer Monsoon Experiment (SCSMEX), the NCEP 40-year reanalysis data and relevant SST and the STH parameters. It is found that the vertical circulation structures differ greatly in features between quasi-Stationary and transient components of the western Pacific STH. When rainstorms happen in the rainband of East Asian subtropical monsoon on the STH north side, the downdrafts are distinct around the ridge at a related meridian. The sinking at high (low) levels comes from the north (south) side of the STH, thereby revealing that the high is a tie between tropical and extratropical systems. The analyses of this paper suggest that the latent heat release associated with subtropical monsoon precipitation, the offshore SST and East Asian land-sea thermal contrast have a significant effect on the STH interannual anomaly. Our numerical experiment shows that the offshore SSTA-caused sensible heating may excite an anomalous anticyclonic circulation on the west side, which affects the intensity (area) and meridional position of the western Pacific STH.展开更多
By using the numerical and dynamical methods, the influence and restriction of the heat source forcing on the subtropical geopotential fields and flow fields are studied and discussed in a model atmosphere. The main r...By using the numerical and dynamical methods, the influence and restriction of the heat source forcing on the subtropical geopotential fields and flow fields are studied and discussed in a model atmosphere. The main results show that the zonal symmetrical solar radiation heating chief-ly induces the geopotential field changing gradually and leads the subtropical high moving slowly, but when the zonal asymmetric thermal difference between ocean and continent achieves its critical value, which usually causes the geopotential field a catastrophe, and consequently induces the subtropical high shake-up or jump. The abnormal activity of the subtropical high is possibly caused by the abnormality of the thermal factor. Key words Subtropical high - Thermal forcing Supported by National Natural Science Foundation (No. 49975012) and National ’ 973’ Key Program (No. G1998040907).展开更多
An intercomparison of summertime (JJA)subtropical geopotential heights from the ERA-40 and NCEP/NCAR reanalysis is specifically conducted over East Eurasia and the western North Pacific. The NCEP/NCAR is obviously l...An intercomparison of summertime (JJA)subtropical geopotential heights from the ERA-40 and NCEP/NCAR reanalysis is specifically conducted over East Eurasia and the western North Pacific. The NCEP/NCAR is obviously lower than the ERA-40 in the mid-to-lower troposphere in most regions of East Eurasia before the mid-1970s, but becomes higher than the ERA-40 after the mid-1970s and thus demonstrates stronger increased trends during the period of 1958-2001. Both reanalyses are lower than the observations in most regions of China. The NCEP/NCAR especially shows tremendously systematic lower values before the mid-1960s and displays abrupt changes before the 1970s. Several indices of the western North Pacific subtropical high (WNPSH), calculated from both reanalyzed summer geopotential heights, also reveal that the variation trend of the NCEP/NCAR is stronger than that of the ERA-40 in the mid-to-lower troposphere from 1958 to 2001. Through singular value decomposition (SVD) analysis, the summer geopotential heights at 500 hPa from the ERA-40 are better than the NCEP/NCAR counterparts at interacting with the precipitation over the East Asian monsoon region. The results indicate that the NCEP/NCAR in the mid-and-lower troposphere may overestimate interdecadal changes and should be used cautiously to study the relationship between the WNPSH and precipitation ove ther East Asia Monsoon region before the mid-1970s.展开更多
The impact of the subtropical high (STH) on precipitation was investigated on a daily timescale using matched NCEP and the Global Precipitation Climatology Project (GPCP) datasets.Comparison of the conditional probabi...The impact of the subtropical high (STH) on precipitation was investigated on a daily timescale using matched NCEP and the Global Precipitation Climatology Project (GPCP) datasets.Comparison of the conditional probability (intensity) of precipitation under STH condi-tions with that under non-STH conditions suggests that the presence of the STH conditions has a limited impact on local precipitation.In the West Pacific Subtropical High (WPSH) and the North Atlantic Subtropical High (NASH),precipitation was only 30% lower under STH conditions than under non-STH conditions.The STH conditions had somewhat more impact on precipitation intensity,but it was still 50% less than the intensity under non-STH conditions (mean of roughly 5 mm d 1).Pre-cipitation under STH conditions was found to be highly correlated with vertical motion.Active updrafts occurring even under STH conditions are essential for frequent oc-currences and moderate intensities of precipitation.展开更多
This study examines the relationship between the subtropical high in the West Pacific and the Okhotsk high in summer, and explains why the subtropical high cannot progress northward when the Okhotsk high is active. Th...This study examines the relationship between the subtropical high in the West Pacific and the Okhotsk high in summer, and explains why the subtropical high cannot progress northward when the Okhotsk high is active. The findings are as follows. (1) A teleconnection pattern, namely, the significant correlation dipole between the index of the Okhotsk high and 500 hPa geopotential height (Z500), over East Asia, tends to occur in summer. (2) The teleconnection is closely related to the wave train propagation from the Okhotsk Sea via Japan to the subtropical regions when the Okhotsk high is developing. (3) The wave train propagation associated with the development of the Okhotsk high can generate a large cyclonic anomaly over the sea east of Japan, even in late summer. The cyclonic anomaly plays an important role in weakening the northern part of the subtropical high. The anomalous southern position of the main body of the subtropical high in the summer of 1998 is partly due to this effect.展开更多
Using NCEP/NCAR daily reanalysis data and SCSMEX data, an investigation is carried out of the relationship between the position variation of the west Pacific subtropical high (WPSH) and the apparcnt heating in June ...Using NCEP/NCAR daily reanalysis data and SCSMEX data, an investigation is carried out of the relationship between the position variation of the west Pacific subtropical high (WPSH) and the apparcnt heating in June 1998 based on the complete vertical vorticlty equation. It is tbund that the non-adiabatic heating plays an important role in the position variation of WPSH. In comparison with climatic mean status, the vertical change of non-adiabatic heating is stronger in the north side of WPSH in June 1998, but weaker in the south side of WPSH. The anomalous non-uniform heating induces anomalous cyclonic vorticity in South China, areas to lhe south of the Yangtze and its mid-lower valleys, but anomalous anticyclonic vorticity in the Indo-China Peninsula and South China Sea areas lead to the more southward position of WPSH than the mean.展开更多
Using the intensity data of each northern subtropical high measured by monthly 500 hPa height charts for the recent 38 years (1954-1991), we calculate their correlations with the monthly sunspot number and monthly sol...Using the intensity data of each northern subtropical high measured by monthly 500 hPa height charts for the recent 38 years (1954-1991), we calculate their correlations with the monthly sunspot number and monthly solar radio flux at 10.7 cm wave length, respectively. Through strict test, we further confirm a series of high correlations. Next, using a method called the non-integer (year) wave, the significant response of each subtropical high's intensity to solar activity at its main period of 10.9-year length is found. Special attention is paid to that of the eastern Pacific high, the possible mechanism of such sensible response is also analysed.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.41988101the Chinese Academy of Sciences under Grant XDA20060102the China Postdoctoral Science Foundation under Grant No.2022T150638 and K.C.Wong Education Foundation.
文摘The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captured by seasonal predictions,a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China.However,the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown.Here,the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China,the amplitude of which became the strongest since 1979.The meridional dipole pattern is two nodes of the Pacific–Japan pattern.To investigate the predictability of the WPSH variation,a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted.The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations.Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific.The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña,which is skillfully predicted by the model.The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations,which are not initialized in the simulations.The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0%and 72.0%,respectively.
文摘By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The influence of the sea surface temperature(SST) and outgoing longwave radiation(OLR) on the Northeast cold vortex and subtropical high was studied.As was shown in the results,in summer,there was a positive correlation between the Northeast cold vortex and the subtropical high,and an anti-phase relationship existed between the threshold characteristic line of GMS-SST=28 ℃ and the height index of the Northeast cold vortex and the subtropical high.With the gradual northward moving of the threshold characteristic line,the subtropical high was weakening,and the Northeast cold vortex was increasing and strengthening.
基金Supported by Projects Funded by Scientific Research Special Fund for Public Welfare Industry (GYHY20076029)
文摘The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR reanalysis data and the index of intensity of western Pacific subtropical high,the seasonal variations of subtropical high and precipitation in eastern China during the past decades are discussed.The relationships between them also are discussed by correlation and composite analyses.The results show that the intensity of subtropical high,which has significantly strengthened in the recent 50 years,especially in spring,autumn and winter,has notable impact on the simultaneous rainfall in the eastern region of China for all seasons,especially in winter.
基金supported by the Innovation Key Prograrn of the Chinese Academy of Sciences ZKCX2-SW-210the National Natural Science Foundation of China under Grant Nol40135020,and 40233033.
文摘Using the relative vorticity averaged over a certain area, a new index for measuring the longitudinal position of the subtropical high (SH) in the western Pacific is proposed to avoid the increasing trend of heights in the previous indices based on geopotential height. The years of extreme westward and eastward extension of SH using the new index are in good agreement with those defined by height index. There exists a distinct difference in large-scale circulation between the eastward and westward extension of SH under the new definition, which includes not only the circulation in the middle latitudes but also the flow in the lower latitudes. It seems that when the SH extends far to the east (west), the summer monsoon in the South China Sea is stronger (weaker) and established earlier (later). In addition, there exists a good relationship between the longitudinal position of SH and the summer rainfall in China. A remarkable negative correlation area appears in the Changjiang River valley, indicating that when the SH extends westward (eastward), the precipitation in that region increases (decreases). A positive correlation region is found in South China, showing the decrease of rainfall when the SH extends westward. On the other hand, the rainfall is heavier when the SH retreats eastward. However, the anomalous longitudinal position of SH is not significantly related to the precipitation in North China. The calculation of correlation coefficients between the index of longitudinal position of SH and surface temperature in China shows that a large area of positive values, higher than 0.6 in the center, covers the whole of North China, even extending eastward to the Korean Peninsula and Japan Islands when using NCEP/NCAR reanalysis data to do the correlation calculation. This means that when the longitudinal position of the SH withdraws eastward in summer, the temperature over North China is higher. On the other hand, when it moves westward, the temperature there is lower. This could explain the phenomenon of the seriously high temperatures over North China during recent summers, because the longitudinal position of SH in recent summers was located far away from the Asian continent. Another region with large negative correlation coefficients is found in South China.
文摘Using the data of 500 hPa geopotential height from 1951 to 1995, SST roughly in the same period and OLR data from 1974 to 1994, the relation between the anomalies of subtropical high (STH for short) and the tropical circulations including the Asian monsoon as well as the convective activity are studied. In order to study the physical process of the air-sea interaction related to STH anomaly, the correlation of STH with SST at various sea areas, lagged and simultaneous, has been calculated. Comparing the difference of OLR, wind fields, vertical circulations and SST anomalies in the strong and weak STH, we investigate the characteristics of global circulations and the SST distributions related to the anomalous STH at the western Pacific both in winter and summer. Much attention has been paid to the study of the air-sea interaction and the relationship between the East Asian monsoon and the STH in the western Pacific. A special vertical circulation, related to the STH anomalies is found, which connects the monsoon current to the west and the vertical flow influenced by the SST anomaly in the tropical eastern Pacific.
基金This work was supported by the National Key Basic Research and Development Project of China 2004CB18300the Key Knowledge Innovation Project of Chinese Academy of Sciences(Grand No.KZCX3-SW-226)the National Natural Science Foundation of China under Grant Nos.40135020 and 40325015.
文摘Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal position of the subtropical high in the western Pacific (SHWP) in the pre-rainy season in South China and associated circulation and precipitation are studied. Furthermore, the relationship between SHWP and SST and the eastern Asian winter monsoon is also investigated. Associated with the anomalous longitudinal position of SHWP in the pre-rainy season in South China, the flow patterns in both the middle and lower latitudes are different. The circulation anomalies greatly influence the precipitation in the pre-rainy season in South China. When the SHWP is in a west position (WP), the South China quasi-stationary front is stronger with more abundant precipitation there. However, when the SHWP is in an east position (EP), a weaker front appears with a shortage of precipitation there. There exists a good relationship between the longitudinal position of SHWP and SST in the tropical region. A negative correlation can be found both in the central and eastern tropical Pacific and the Indian Ocean. This means that the higher (lower) SST there corresponds to a west (east) position of SHWP. This close relationship can be found even in the preceding autumn and winter. A positive correlation appears in the western and northern Pacific and large correlation coefficient values also occur in the preceding autumn and winter. A stronger eastern Asian winter monsoon will give rise to cooler SSTs in the Kuroshio and the South China Sea regions and it corresponds to negative SST anomaly (SSTA) in the central and eastern Pacific and positive SSTA in the western Pacific in winter and the following spring. The whole tropical SSTA pattern, that is, positive (negative) SSTA in the central and eastern Pacific and negative (positive) SSTA in the western Pacific, is favorable to the WP (EP) of SHWP.
基金supported jointly by the National Natural Science Foundation of China(Grant No.91337216)the Special Fund for Public Welfare Industry(Meteorology),administered by the Chinese Ministry of Finance and the Ministry of Science and Technology(Grant No.GYHY201406001)the CAS XDA(Grant No.11010402)
文摘The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.
文摘In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geoslrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America.
基金supported by the National Science Foundation of China(Grant Nos.41475052 and 41405058)
文摘Both 1981 and 2013 were weak La Nifia years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the westem Pacific subtropical high (WPSH) during August exhibited an opposite anomaly in the two years. A comparison indicates that, in the absence of a strong SST anomaly in the tropics, the cold advection from Eurasian high latitudes and the convection of the western Pacific warm pool play important roles in influencing the strength and position of the WPSH in August. In August 1981, the spatial pattern of 500 hPa geopotential height was characterized by a meridional circulation with a strong ridge in the Ural Mountains and a deep trough in Siberia, which provided favorable conditions for cold air invading into the lower latitudes. Accordingly, the geopotential height to the north of the WPSH was reduced by the cold advection anomaly from high latitudes, resulting in an eastward retreat of the WPSH. Moreover, an anomalous cyclonic circulation in the subtropical western Pacific, excited by enhanced warm pool convection, also contributed to the eastward retreat of the WPSH. By contrast, the influence from high latitudes was relatively weak in August 2013 due to a zonal circulation pattern over Eurasia, and the anomalous anticyclonic circulation induced by suppressed warm pool convection also facilitated the westward extension of the WPSH. Therefore, the combined effects of the high latitude and tropical circulations may contribute a persistent anomaly of the WPSH in late summer, despite the tropical SST anomaly being weak.
基金supported by the Special Public Welfare Research Fund of China Meteorological Administration (Grant No. GYHY201406020)the National Natural Science Foundation of China (Grant No. 41375055)
文摘In the summer of 2013, an unprecedented heat wave was experienced over a vast area of southern China. The great areal extent, duration, and strength of this high temperature are very rare. For the 2013 hot spell, the major and direct influence mostly came from the anomaly of the western Pacific subtropical high(WPSH). The abnormally strong and stable WPSH was associated with specific surrounding circulations. The eastward extension of a stronger Qinghai-Xizang high favored the westward extension of the WPSH. The weaker cold air activity from the polar region led to the northward shift of the WPSH and helped it to remain stable. In the tropics, the western segment of the ITCZ was abnormally strong in the period, and supported the maintenance of the WPSH from the south. In addition, the interdecadal variation of the WPSH provided a decadal background for the anomaly variation of the WPSH that summer.
基金National Developing Program for Basic Sciences No.1998040900National Natural Science Foundation of China No. 40105007
文摘Western North Pacific Subtropical High is a very important atmospheric circulation system influencing the summer climate over eastern China. Its interdecadal change is analyzed in this study. There is a significant decadal shift in about 1979/1980. Since 1980, the Western North Pacific Subtropical High has enlarged, intensified, and shifted southwestward. This change gives rise to an anti-cyclonic circulation anomaly over the region from the South China Sea to western Pacific and thus causes wet anomalies over the Yangtze River valley. During the summers of 1980-1999, the precipitation is 63.9 mm above normal, while during 1958-1979 it is 27.3 mm below normal. The difference is significant at the 99% confidence level as a t-test shown. The southwestward expanding of the Western North Pacific Subtropical High also leads to a significant warming in southern China, during 1980-1999 the summer mean temperature is 0.37篊 warmer than that of the period 1958-1979. The strong warming is primarily due to the clearer skies associated with the stronger downward air motion as the Western North Pacific Subtropical High expanding to the west and controlling southern China. It is also found that the relative percentage of tropical cyclones in the regions south of 20篘 is decreasing since the 1980s, but in the regions north of 20篘 that is increasing at the same time. The Western North Pacific Subtropical High responds significantly to sea surface temperature of the tropical eastern Pacific with a lag of one-two seasons and simultaneously to sea surface temperature of the tropical Indian Ocean. The changes in the sea surface temperatures are mainly responsible for the interdecadal variability of the Western North Pacific Subtropical High.
基金supported by the National Basic Research Program of China(Grant No.2010CB951901)the National Natural Science Foundation of China(Grant No.40821092)
文摘Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical SST anomalies. The authors show that the northward jumps, especially the second jump, exhibited remarkable interannual variability. In addition, the authors find that the two northward jumps were mutually independent and were influenced by the SST anomalies in the different regions of the tropical Pacific. The first jump was positively correlated with the SST anomalies in the tropical central Pacific from the preceding winter to June. In contrast, the second jump was positively related to ENSO in the preceding winter, but this correlation tended to weaken with the decay of ENSO and disappeared in July. Instead, a positive correlation was found in the Indian Ocean. We therefore suggest that ENSO plays an indirect role in the second jump through the capacitor effect of the Indian Ocean.
基金supported by the National Science Foundation of China (Grant Nos. 41475052 and 41630530)
文摘The anomalous behavior of the western Pacific subtropical high (WPSH) in E1 Nifio developing summer is studied based on the composite results of eight major E1 Nifio events during 1979-2013. It is shown that the WPSH tends to retreat eastwards with weak intensity during the developing summer. The anomaly exhibits an intraseasonal variation with a weaker anomaly in June and July and a stronger anomaly in August, indicating that different underlying physical mechanisms may be responsible for the anomalous WPSH during early and late summer periods. In June and July, owing to the cold advection anomaly characterized as a weak northerly anomaly from high latitudes, geopotential height in East Asia is reduced and the WPSH tends to retreat eastwards slightly. By contrast, enhanced convection over the warm pool in August makes the atmosphere more sensitive to E1 Nifio forcing. Consequently, a cyclonic anomaly in the western Pacific is induced, which is consistent with the seasonal march of atmospheric circulation from July to August. Accordingly, geopotential height in the western Pacific is reduced significantly, and the WPSH tends to retreat eastwards remarkably in August. Different from the developing summer, geopotential height in the decaying summer over East Asia and the western Pacific tends to enhance and extend northwards from June to August consistently, reaching the maximum anomaly in August. Therefore, the seasonal march plays an important role in the WPSH anomaly for both the developing and decaying summer.
基金The National Natural Science Foundation of China (No.49635170)The program of Study on Regional Climate Variation and Mechani
文摘The paper investigates the vertical circulation structure of the western Pacific subtropical high (STH) and its interannual variation features in relation tO East Asian subtropical summer monsoon and external thermal forcing by using the high-resolution and good-quality observations from the 1998 South China Sea Summer Monsoon Experiment (SCSMEX), the NCEP 40-year reanalysis data and relevant SST and the STH parameters. It is found that the vertical circulation structures differ greatly in features between quasi-Stationary and transient components of the western Pacific STH. When rainstorms happen in the rainband of East Asian subtropical monsoon on the STH north side, the downdrafts are distinct around the ridge at a related meridian. The sinking at high (low) levels comes from the north (south) side of the STH, thereby revealing that the high is a tie between tropical and extratropical systems. The analyses of this paper suggest that the latent heat release associated with subtropical monsoon precipitation, the offshore SST and East Asian land-sea thermal contrast have a significant effect on the STH interannual anomaly. Our numerical experiment shows that the offshore SSTA-caused sensible heating may excite an anomalous anticyclonic circulation on the west side, which affects the intensity (area) and meridional position of the western Pacific STH.
文摘By using the numerical and dynamical methods, the influence and restriction of the heat source forcing on the subtropical geopotential fields and flow fields are studied and discussed in a model atmosphere. The main results show that the zonal symmetrical solar radiation heating chief-ly induces the geopotential field changing gradually and leads the subtropical high moving slowly, but when the zonal asymmetric thermal difference between ocean and continent achieves its critical value, which usually causes the geopotential field a catastrophe, and consequently induces the subtropical high shake-up or jump. The abnormal activity of the subtropical high is possibly caused by the abnormality of the thermal factor. Key words Subtropical high - Thermal forcing Supported by National Natural Science Foundation (No. 49975012) and National ’ 973’ Key Program (No. G1998040907).
基金supported by the National Key Basic Research Program of China (Grant No. 2006CB400502 and 2009CB723904)the National Natural Science Foundation of China (Grant No.40805032)IAP/CAS Knowledge Innovation Project(IAP07405)
文摘An intercomparison of summertime (JJA)subtropical geopotential heights from the ERA-40 and NCEP/NCAR reanalysis is specifically conducted over East Eurasia and the western North Pacific. The NCEP/NCAR is obviously lower than the ERA-40 in the mid-to-lower troposphere in most regions of East Eurasia before the mid-1970s, but becomes higher than the ERA-40 after the mid-1970s and thus demonstrates stronger increased trends during the period of 1958-2001. Both reanalyses are lower than the observations in most regions of China. The NCEP/NCAR especially shows tremendously systematic lower values before the mid-1960s and displays abrupt changes before the 1970s. Several indices of the western North Pacific subtropical high (WNPSH), calculated from both reanalyzed summer geopotential heights, also reveal that the variation trend of the NCEP/NCAR is stronger than that of the ERA-40 in the mid-to-lower troposphere from 1958 to 2001. Through singular value decomposition (SVD) analysis, the summer geopotential heights at 500 hPa from the ERA-40 are better than the NCEP/NCAR counterparts at interacting with the precipitation over the East Asian monsoon region. The results indicate that the NCEP/NCAR in the mid-and-lower troposphere may overestimate interdecadal changes and should be used cautiously to study the relationship between the WNPSH and precipitation ove ther East Asia Monsoon region before the mid-1970s.
基金supported by Special Funds for Public Welfare of China (Grant No.GYHY-QX-2007)the National Natural Science Foundation of China (Grant Nos.40730950,40675027,and 40805007)
文摘The impact of the subtropical high (STH) on precipitation was investigated on a daily timescale using matched NCEP and the Global Precipitation Climatology Project (GPCP) datasets.Comparison of the conditional probability (intensity) of precipitation under STH condi-tions with that under non-STH conditions suggests that the presence of the STH conditions has a limited impact on local precipitation.In the West Pacific Subtropical High (WPSH) and the North Atlantic Subtropical High (NASH),precipitation was only 30% lower under STH conditions than under non-STH conditions.The STH conditions had somewhat more impact on precipitation intensity,but it was still 50% less than the intensity under non-STH conditions (mean of roughly 5 mm d 1).Pre-cipitation under STH conditions was found to be highly correlated with vertical motion.Active updrafts occurring even under STH conditions are essential for frequent oc-currences and moderate intensities of precipitation.
基金This study was supported by the National Natural Science Foundation of China under Grant No. 49794030 and the Ministry of Science Technology of China (G1998040908).
文摘This study examines the relationship between the subtropical high in the West Pacific and the Okhotsk high in summer, and explains why the subtropical high cannot progress northward when the Okhotsk high is active. The findings are as follows. (1) A teleconnection pattern, namely, the significant correlation dipole between the index of the Okhotsk high and 500 hPa geopotential height (Z500), over East Asia, tends to occur in summer. (2) The teleconnection is closely related to the wave train propagation from the Okhotsk Sea via Japan to the subtropical regions when the Okhotsk high is developing. (3) The wave train propagation associated with the development of the Okhotsk high can generate a large cyclonic anomaly over the sea east of Japan, even in late summer. The cyclonic anomaly plays an important role in weakening the northern part of the subtropical high. The anomalous southern position of the main body of the subtropical high in the summer of 1998 is partly due to this effect.
基金Innovation Plans for Postgraduates of Higher Education Colleges in Jiangsu Province(E30000008098-3)Natural Science Foundation of China (40575045)+1 种基金National Key Fundamental ResearchDevelopment Plans (2004CB418302 2004CB418303)
文摘Using NCEP/NCAR daily reanalysis data and SCSMEX data, an investigation is carried out of the relationship between the position variation of the west Pacific subtropical high (WPSH) and the apparcnt heating in June 1998 based on the complete vertical vorticlty equation. It is tbund that the non-adiabatic heating plays an important role in the position variation of WPSH. In comparison with climatic mean status, the vertical change of non-adiabatic heating is stronger in the north side of WPSH in June 1998, but weaker in the south side of WPSH. The anomalous non-uniform heating induces anomalous cyclonic vorticity in South China, areas to lhe south of the Yangtze and its mid-lower valleys, but anomalous anticyclonic vorticity in the Indo-China Peninsula and South China Sea areas lead to the more southward position of WPSH than the mean.
文摘Using the intensity data of each northern subtropical high measured by monthly 500 hPa height charts for the recent 38 years (1954-1991), we calculate their correlations with the monthly sunspot number and monthly solar radio flux at 10.7 cm wave length, respectively. Through strict test, we further confirm a series of high correlations. Next, using a method called the non-integer (year) wave, the significant response of each subtropical high's intensity to solar activity at its main period of 10.9-year length is found. Special attention is paid to that of the eastern Pacific high, the possible mechanism of such sensible response is also analysed.