期刊文献+
共找到355篇文章
< 1 2 18 >
每页显示 20 50 100
Changes in ecological stoichiometry and nutrient resorption in Castanopsis hystrix plantations along an urbanization gradient in the lower subtropics 被引量:1
1
作者 Feifan Li Bing Sun +1 位作者 Zhaowan Shi Nancai Pei 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2323-2331,共9页
The stoichiometry of carbon,nitrogen and phosphorous in plants can reflect the interactions between plants and their environment.The interplay between plant nutrients,climatic factors,and soil properties and the under... The stoichiometry of carbon,nitrogen and phosphorous in plants can reflect the interactions between plants and their environment.The interplay between plant nutrients,climatic factors,and soil properties and the underlying regulatory mechanisms are pillars of ecology but remain underexplored.In this study of plant C-N-P stoichiometry and nutrient resorption in Castanopsis hystrix groves in three cities(Guangzhou,Zhongshan,and Lechang)that represent an urban-rural gradient in Guangdong Province,South China,we explored potential relationships among NO_(2) concentrations,diameter at breast height(DBH),and resident human population.Mean annual temperature,mean annual precipitation,insolation duration per year,and the human resident population differed significantly among the three cities.Soil C-N-P was always highest in suburban Lechang,and the concentration of NO_(2) was highest in urban Guanghzou(55.33±0.67μg m^(-3))and positively correlated with the resident population and leaf N:P.Our findings suggest that C-N-P stoichiometry of C.hystrix was better explained by NO_(2)than by soil C-N-P stoichiometry and that nutrient resorption was better explained by leaf nutrients and DBH than by NO_(2) and soil stoichiometry.Our study supports the hypothesis that rapid urbanization influences NO_(2) concentrations and microclimate,which may jointly change the stoichiometry of plant nutrients in the forest ecosystems. 展开更多
关键词 Ecological stoichiometry Nutrient cycling Plant-environment interaction Subtropical forest Urban–rural gradient
下载PDF
Changes of citrus climate risk in subtropics of China 被引量:2
2
作者 DUAN Hailai QIAN Huaisui +1 位作者 LI Mingxia DU Yaodong 《Journal of Geographical Sciences》 SCIE CSCD 2010年第6期818-832,共15页
Based on the citrus temperature, precipitation, sunlight and climate risk degree, the article divides subtropics of China into three types: the low risk region, the moderate risk region and the high risk region. The ... Based on the citrus temperature, precipitation, sunlight and climate risk degree, the article divides subtropics of China into three types: the low risk region, the moderate risk region and the high risk region. The citrus temperature risk increases with increasing latitude (except for the western mountainous area of subtropics of China). The citrus precipitation risk in the central part of subtropics of China is higher than that in the northern and western parts. The distributions of citrus sunlight risk are not consistent to those of the citrus precipitation risk. The citrus climate risk is mainly influenced by temperature. There is latitudinal zonal law for the distribution of the climate risk, that is, the climate risk increases with increasing latitude At the same time the climate risk in mountainous area is high and that in eastern plain area is low. There are differences in the temporal and spatial changes of the citrus climate. In recent 46 years, the citrus climate risk presents a gradual increasing trend in subtropics of China, especially it has been increasing fast since the 1980s. Because of the global warming, the low risk region in the eastern and southern parts has a gradual decreasing trend, however, the high risk region in the northern and western parts has an increasing trend and the high risk region has been extending eastward and southward. The article analyses the distribution of the citrus climate risk degree of reduction rates of 〉10%, 〉20% and 〉30% in subtropics of China, and studies their changes in different time periods. Results show that the risk is increasing from southeast to northwest. 展开更多
关键词 climate risk degree climate change climate risk dynamic assessment model climate suitability model CITRUS subtropics of China
原文传递
Soil bacterial and fungal communities resilience to long-term nitrogen addition in subtropical forests in China
3
作者 Xinlei Fu Yunze Dai +3 位作者 Jun Cui Pengfei Deng Wei Fan Xiaoniu Xu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期95-108,共14页
Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have no... Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition. 展开更多
关键词 Long-term nitrogen addition Old-growth subtropical forest METAGENOMICS Beneficial microorganisms Co-occurrence network
下载PDF
The storage and utilization of carbohydrates in response to elevation mediated by tree organs in subtropical evergreen broad-leaved forests
4
作者 Bin Xu Xueli Jiang +4 位作者 Yingying Zong G.Geoff Wang Fusheng Chen Zhenyu Zhao Xiangmin Fang 《Forest Ecosystems》 SCIE CSCD 2024年第1期52-61,共10页
Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl... Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems. 展开更多
关键词 Nonstructural carbohydrates Structural carbohydrates ELEVATION Subtropical evergreen broad-leaved forests Tree organs
下载PDF
Subtropical forest macro-decomposers rapidly transfer litter carbon and nitrogen into soil mineral-associated organic matter
5
作者 Guoxiang Niu Tao Liu +4 位作者 Zhen Zhao Xuebing Zhang Huiling Guan Xiaoxiang He Xiankai Lu 《Forest Ecosystems》 SCIE CSCD 2024年第2期131-139,共9页
Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SO... Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SOM into particulate and mineral-associated organic matter(POM vs.MAOM)is a promising method for identifying how SOM contributes to reducing global warming.Soil macrofauna,earthworms,and millipedes have been found to play an important role in facilitating SOM processes.However,how these two co-existing macrofaunae impac the litter decomposition process and directly impact the formation of POM and MAOM remains unclear.Methods:Here,we set up a microcosm experiment,which consisted of 20 microcosms with four treatments earthworm and litter addition(E),millipedes and litter addition(M),earthworm,millipedes,and litter addition(E+M),and control(only litter addition)in five replicates.The soil and litter were sterilized prior to beginning the incubation experiment to remove any existing microbes.After incubating the samples for 42 days,the litte properties(mass,C,and N contents),soil physicochemical properties,as well as the C and N contents,and POM and MAOM^(13)C abundance in the 0–5 and 5–10 cm soil layers were measured.Finally,the relative influences o soil physicochemical and microbial properties on the distribution of C and N in the soil fractions were analyzed Results:The litter mass,C,and N associated with all four treatments significantly decreased after incubation especially under treatment E+M(litter mass:-58.8%,litter C:-57.0%,litter N:-75.1%,respectively),while earthworm biomass significantly decreased under treatment E.Earthworm or millipede addition alone showed no significant effects on the organic carbon(OC)and total nitrogen(TN)content in the POM fraction,but join addition of both significantly increased OC and TN regardless of soil depth.Importantly,all three macrofauna treatments increased the OC and TN content and decreased the^(13)C abundance in the MAOM fraction.More than65%of the total variations in the distribution of OC and TN throughout the two fractions can be explained by a combination of soil physicochemical and microbial properties.Changes in the OC distribution in the 0–5 cm soi layer are likely due to a decrease in soil pH and an increase in arbuscular mycorrhizal fungi(AMF),while those in the 5–10 cm layer are probably caused by increases in soil exchangeable Ca and Mg,in addition to fungi and gram-negative(GN)bacteria.The observed TN distribution changes in the 0–5 cm soil likely resulted from a decrease in soil pH and increases in AMF,GN,and gram-negative(GP)bacteria,while TN distribution changes in the 5–10 cm soil could be explained by increases in exchangeable Mg and GN bacteria.Conclusions:The results indicate that the coexistence of earthworms and millipedes can accelerate the litte decomposition process and store more C in the MAOM fractions.This novel finding helps to unlock the processe by which complex SOM systems serve as C sinks in tropical forests and addresses the importance of soil mac rofauna in maintaining C-neutral atmospheric conditions under global climate change. 展开更多
关键词 Tropical and subtropical forest Soil organic matter fractions EARTHWORM MILLIPEDES Litter decomposition
下载PDF
Clinical profile and risk factors of Strongyloides stercoralis infection
6
作者 Rupak Chatterjee Alisha Acharya +4 位作者 Subhoroop Ghosh Shatavisa Mukherjee Tapashi Ghosh Nandini Chatterjee Netai Pramanik 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2024年第1期43-44,共2页
Strongyloides(S.)stercoralis,endemic in tropical and subtropical countries,is a soil-transmitted geohelminth human parasite belonging to a group of nematodes called roundworms.S.stercoralis is one of the most overlook... Strongyloides(S.)stercoralis,endemic in tropical and subtropical countries,is a soil-transmitted geohelminth human parasite belonging to a group of nematodes called roundworms.S.stercoralis is one of the most overlooked parasitic infections enlisted among the WHO"neglected tropical diseases"[1].S.stercoralis mainly infects humans but can also be found naturally in domestic dogs,cats,and some primates. 展开更多
关键词 TROPICAL SUBTROPICAL LISTED
下载PDF
Community structure and species diversity dynamics of a subtropical evergreen broad-leaved forest in China:2005 to 2020
7
作者 Shi-Guang Wei Lin Li +3 位作者 Kun-Dong Bai Zhi-Feng Wen Jing-Gang Zhou Qin Lin 《Plant Diversity》 SCIE CAS CSCD 2024年第1期70-77,共8页
Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest chang... Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure. 展开更多
关键词 Community structure Death and renewal dynamics Species diversity dynamics South subtropical forest
下载PDF
Circulation Pattern Controls of Summer Temperature Anomalies in Southern Africa
8
作者 Chibuike Chiedozie IBEBUCHI Cameron C.LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期341-354,共14页
This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thicknes... This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa. 展开更多
关键词 TEMPERATURE circulation types Subtropical Indian Ocean dipole Southern Annular Mode El Ni?o Indian Ocean dipole Mascarene High South Atlantic anticyclone
下载PDF
Variability of the Pacific subtropical cells under global warming in CMIP6 models
9
作者 Xue HAN Junqiao FENG +1 位作者 Yunlong LU Dunxin HU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期24-40,共17页
The Pacific subtropical cells(STCs)are shallow meridional overturning circulations connecting the tropics and subtropics,and are assumed to be an important driver of the tropical Pacific decadal variability.The variab... The Pacific subtropical cells(STCs)are shallow meridional overturning circulations connecting the tropics and subtropics,and are assumed to be an important driver of the tropical Pacific decadal variability.The variability of STCs under global warming is investigated using multimodal outputs from the latest phase of the Coupled Model Inter-comparison Project(CMIP6)and ocean reanalysis products.Firstly,the volume transport diagnostic analysis is employed to evaluate how coupled models and ocean reanalysis products reproduce interior STC transport.The variation of heat transport by the interior STC under the high-emissions warming scenarios is also analyzed.The results show that the multimodal-mean linear trends of the interior STC transport along 9°S and 9°N are-0.02 Sv/a and 0.04 Sv/a under global warming,respectively,which is mainly due to the combined effect of the strengthened upper oceanic stratification and the weakening of wind field.There is a compensation relationship between the interior STC and the western boundary transport in the future climate,and the compensation relationship of 9°S is more significant than that of 9°N.In addition,compared with ocean reanalysis products,the coupled models tend to underestimate the variability of the interior STC transport convergence,and thus may lose some sea surface temperature(SST)driving force,which may be the reason for the low STC-SST correlation simulated by the model.The future scenario simulation shows that the heat transport of interior STC is weakened under global warming,with a general agreement across models. 展开更多
关键词 interior subtropical cell(STC) global warming Coupled Model Inter-comparison Project(CMIP6) western boundary transport
下载PDF
Analysis and Assessment on the Heavy Metals in a Severely Degraded Subtropical Red Soil Region
10
作者 Fang Wang Yun Zhou +5 位作者 Xiangping Fu Yuxiao Zhao Yiyao Wen Xintao Cui Shunbao Lu Yanjie Zhang 《American Journal of Plant Sciences》 CAS 2024年第2期110-121,共12页
5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content ... 5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content of degraded red soil region in subtropics. The soil heavy metal pollution degree was evaluated by national environmental quality standard (II class). The results showed that three soil metals of P. massoniana × S. superba were the highest, and the soil metals enrichment ability was strong. The order of single factor pollution index of metal elements was Cu (1.38) > Cr (0.81) > Zn (0.42), and moderately pollution, pollution warning and no pollution, respectively. There was no significant correlation between three soil heavy metals and soil total carbon (TC), total nitrogen (TN) and total phosphorus (TP). These results suggested that the accumulation of heavy metal elements was not derived from the parent material of soil. There was a significant positive correlation between the three metal elements which indicated that the sources of the three elements were similar. The structural equation model showed that the direct and indirect effects among the influencing factors ultimately affected the activity of heavy metals by cascade effects. 展开更多
关键词 Subtropical Forest Type Degraded Red Soil Heavy Metals Pollution Evaluation
下载PDF
Climate change impacts the distribution of Quercus section Cyclobalanopsis(Fagaceae),a keystone lineage in East Asian evergreen broadleaved forests
11
作者 Lin Lin Xiao-Long Jiang +2 位作者 Kai-Qi Guo Amy Byrne Min Deng 《Plant Diversity》 SCIE CAS CSCD 2023年第5期552-568,共17页
East Asian evergreen broadleaved forests(EBFLs) harbor high species richness,but these ecosystems are severely impacted by global climate change and deforestation.Conserving and managing EBLFs requires understanding d... East Asian evergreen broadleaved forests(EBFLs) harbor high species richness,but these ecosystems are severely impacted by global climate change and deforestation.Conserving and managing EBLFs requires understanding dominant tree distribution dynamics.In this study,we used 29 species in Quercus section Cyclobalanopsis-a keystone lineage in East Asian EBLFs-as proxies to predict EBLF distribution dynamics using species distribution models(SDMs).We examined climatic niche overlap,similarity,and equivalency among seven biogeographical regions’ species using’ecospat’.We also estimated the effectiveness of protected areas in the predicted range to elucidate priority conservation regions.Our results showed that the climatic niches of most geographical groups differ.The western species under the Indian summer monsoon regime were mainly impacted by temperature factors,whereas precipitation impacted the eastern species under the East Asian summer monsoon regime.Our simulation predicted a northward range expansion of section Cyclobalanopsis between 2081 and 2100,except for the ranges of the three Himalayan species analyzed,which might shrink significantly.The greatest shift of highly suitable areas was predicted for the species in the South Pacific,with a centroid shift of over 300 km.Remarkably,only 7.56% of suitable habitat is currently inside protected areas,and the percentage is predicted to continue declining in the future.To better conserve Asian EBLFs,establishing nature reserves in their northern distribution ranges,and transplanting the populations with predicted decreasing numbers and degraded habitats to their future highly suitable areas,should be high-priority objectives. 展开更多
关键词 Species distribution model(SDM) East Asian tropics and subtropics Biodiversity conservation Distribution dynamics Global climate change
下载PDF
Seasonal Prediction of the Record-Breaking Northward Shift of the Western Pacific Subtropical High in July 2021 被引量:4
12
作者 Shuai HU Tianjun ZHOU +1 位作者 Bo WU Xiaolong CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期410-427,共18页
The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captu... The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captured by seasonal predictions,a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China.However,the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown.Here,the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China,the amplitude of which became the strongest since 1979.The meridional dipole pattern is two nodes of the Pacific–Japan pattern.To investigate the predictability of the WPSH variation,a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted.The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations.Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific.The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña,which is skillfully predicted by the model.The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations,which are not initialized in the simulations.The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0%and 72.0%,respectively. 展开更多
关键词 western pacific subtropical high seasonal prediction seasonal predictability La Niña Pacific-Japan pattern
下载PDF
Circulation Patterns Linked to the Positive Sub-Tropical Indian Ocean Dipole 被引量:1
13
作者 Chibuike Chiedozie IBEBUCHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期110-128,共19页
The positive phase of the subtropical Indian Ocean dipole(SIOD)is one of the climatic modes in the subtropical southern Indian Ocean that influences the austral summer inter-annual rainfall variability in parts of sou... The positive phase of the subtropical Indian Ocean dipole(SIOD)is one of the climatic modes in the subtropical southern Indian Ocean that influences the austral summer inter-annual rainfall variability in parts of southern Africa.This paper examines austral summer rain-bearing circulation types(CTs)in Africa south of the equator that are related to the positive SIOD and the dynamics through which specific rainfall regions in southern Africa can be influenced by this relationship.Four austral summer rain-bearing CTs were obtained.Among the four CTs,the CT that featured(i)enhanced cyclonic activity in the southwest Indian Ocean;(ii)positive widespread rainfall anomaly in the southwest Indian Ocean;and(iii)low-level convergence of moisture fluxes from the tropical South Atlantic Ocean,tropical Indian Ocean,and the southwest Indian Ocean,over the south-central landmass of Africa,was found to be related to the positive SIOD climatic mode.The relationship also implies that positive SIOD can be expected to increase the amplitude and frequency of occurrence of the aforementioned CT.The linkage between the CT related to the positive SIOD and austral summer homogeneous regions of rainfall anomalies in Africa south of the equator showed that it is the principal CT that is related to the inter-annual rainfall variability of the south-central regions of Africa,where the SIOD is already known to significantly influence its rainfall variability.Hence,through the large-scale patterns of atmospheric circulation associated with the CT,the SIOD can influence the spatial distribution and intensity of rainfall over the preferred landmass through enhanced moisture convergence. 展开更多
关键词 subtropical Indian Ocean dipole circulation types RAINFALL South Indian Ocean moisture convergence
下载PDF
Nitrogen addition promotes foliar litterfall and element return in a subtropical forest,southwestern China
14
作者 Yue Zhang Shichen Xiong +7 位作者 Chengming You Sining Liu Lixia Wang Li Zhang Han Li Bo Tan Yang Liu Zhenfeng Xu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期939-948,共10页
Nitrogen deposition has a considerable impact on biogeochemical cycling in terrestrial ecosystems.However,how litter production and element return respond to N addition remains poorly understood in nitrogen-rich subtr... Nitrogen deposition has a considerable impact on biogeochemical cycling in terrestrial ecosystems.However,how litter production and element return respond to N addition remains poorly understood in nitrogen-rich subtropical regions.In this study,a 4-year nitrogen addition experiment explored its eff ects on foliar litter production and carbon,nitrogen and phosphorus in a subtropical Michelia wilsonii forest.A clear seasonal pattern in foliar litterfall was observed,regardless of nitrogen treatments,with a peak in spring and a smaller one in autumn.Foliar litter increased with increasing nitrogen but did not aff ect litter carbon concentrations and often decreased nitrogen and phosphorous concentrations.The eff ect of nitrogen addition was dependent on time(month/year).Carbon,nitrogen and phosphorous return showed similar bimodal seasonal patterns.Nitrogen addition increased carbon and nitrogen return but did not aff ect phosphorous.Our results suggest that the addition of nitrogen stimulates carbon and nutrient return via litterfall. 展开更多
关键词 Nitrogen addition LITTERFALL Seasonal patterns Element return Subtropical forest
下载PDF
Environment drives the co-occurrence of bacteria and microeukaryotes in a typical subtropical bay
15
作者 Yifan MA Lingfeng HUANG Wenjing ZHANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2292-2308,共17页
The co-occurrence of bacteria and microeukaryote species is a ubiquitous ecological phenomenon,but there is limited cross-domain research in aquatic environments.We conducted a network statistical analysis and visuali... The co-occurrence of bacteria and microeukaryote species is a ubiquitous ecological phenomenon,but there is limited cross-domain research in aquatic environments.We conducted a network statistical analysis and visualization of microbial cross-domain co-occurrence patterns based on DNA sampling of a typical subtropical bay during four seasons,using high-throughput sequencing of both 18S rRNA and 16S rRNA genes.First,we found obvious relationships between network stability and network complexity indices.For example,increased cooperation and modularity were found to weaken the stability of cross-domain networks.Secondly,we found that bacterial operational taxonomic units(OTUs)were the most important contributors to network complexity and stability as they occupied more nodes,constituted more keystone OTUs,built more connections,more importantly,ignoring bacteria led to greater variation in network robustness.Gammaproteobacteria,Alphaproteobacteria,Bacteroidetes,and Actinobacteria were the most ecologically important groups.Finally,we found that the environmental drivers most associated with cross-domain networks varied across seasons(in detail,the network in January was primarily constrained by temperature and salinity,the network in April was primarily constrained by depth and temperature,the network in July was mainly affected by depth,temperature,and salinity,depth was the most important factor affecting the network in October)and that environmental influence was stronger on bacteria than on microeukaryotes. 展开更多
关键词 co-occurrence network cross-domain network stability network complexity subtropical bay
下载PDF
Intraspecific variations in fine root N and P and factors affecting their concentrations in Masson pine plantations across subtropical China
16
作者 Zunji Jian Jin Xu +3 位作者 Yanyan Ni Lei Lei Lixiong Zeng Wenfa Xiao 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1463-1473,共11页
Fine roots(<2 mm)play vital roles in water and nutrient uptake.However,intraspecific variations in their chemical traits and their controlling mechanisms remain poorly understood at a regional scale.This study exam... Fine roots(<2 mm)play vital roles in water and nutrient uptake.However,intraspecific variations in their chemical traits and their controlling mechanisms remain poorly understood at a regional scale.This study examined these intraspecific variations in fine roots in Masson pine(Pinus massoniana Lamb.)plantations across subtropical China and their responses to environmental factors.Root nitrogen(N)and phosphorus(P)concentrations and their mass ratios(N:P)ranged from 3.5 to 11.7 g kg^(-1),0.2 to0.9 g kg^(-1),and 7.8 to 51.6 g kg^(-1),respectively.These three chemical traits were significantly different between sites and in longitudinal patterns across subtropical China.Mean annual temperature was positively related to root N concentration but negatively related to root P concentration.There were significant,negative relationships between clay content and root P concentration and between pH and root N concentration.Available N had no significant relationship with root N concentration,while available P was a significantly positive relationship with root P concentration.The combined effects of altitude,climate(temperature and precipitation)and soil properties(pH,clay content,available N and P)explained 26%and 36%of the root N and P concentrations variations,respectively.These environmental variables had direct and indirect effects and exhibited disproportionate levels of total effects on root N and P concentrations.Root N and P concentrations explained 35%and 65%variations in their mass ratios,respectively.The results highlight different spatial patterns of chemical traits and various environmental controls on root N and P concentrations in these ecosystems.More cause-effect relationships of root chemical traits with abiotic and biotic factors are needed to understand nutrient uptake strategies and the mechanisms controlling intraspecific variations in plant traits. 展开更多
关键词 Fine root Chemical traits Environmental variables Pinus massoniana Subtropical China
下载PDF
Remote sensing of subtropical tree diversity:The underappreciated roles of the practical definition of forest canopy and phenological variation
17
作者 Yongchao Liu Ruyun Zhang +11 位作者 Chen-Feng Lin Zhaochen Zhang Ran Zhang Kankan Shang Mingshui Zhao Jingyue Huang Xiaoning Wang You Li Yulin Zeng Yun-Peng Zhao Jian Zhang Dingliang Xing 《Forest Ecosystems》 SCIE CSCD 2023年第3期378-386,共9页
Tree species diversity is vital for maintaining ecosystem functions,yet our ability to map the distribution of tree diversity is limited due to difficulties in traditional field-based approaches.Recent developments in... Tree species diversity is vital for maintaining ecosystem functions,yet our ability to map the distribution of tree diversity is limited due to difficulties in traditional field-based approaches.Recent developments in spaceborne remote sensing provide unprecedented opportunities to map and monitor tree diversity more efficiently.Here we built partial least squares regression models using the multispectral surface reflectance acquired by Sentinel-2 satellites and the inventory data from 74 subtropical forest plots to predict canopy tree diversity in a national natural reserve in eastern China.In particular,we evaluated the underappreciated roles of the practical definition of forest canopy and phenological variation in predicting tree diversity by testing three different definitions of canopy trees and comparing models built using satellite imagery of different seasons.Our best models explained 42%–63%variations in observed diversities in cross-validation tests,with higher explanation power for diversity indices that are more sensitive to abundant species.The models built using imageries from early spring and late autumn showed consistently better fits than those built using data from other seasons,highlighting the significant role of transitional phenology in remotely sensing plant diversity.Our results suggested that the cumulative diameter(60%–80%)of the biggest trees is a better way to define the canopy layer than using the subjective fixeddiameter-threshold(5–12 cm)or the cumulative basal area(90%–95%)of the biggest trees.Remarkably,these approaches resulted in contrasting diversity maps that call attention to canopy structure in remote sensing of tree diversity.This study demonstrates the potential of mapping and monitoring tree diversity using the Sentinal-2 data in species-rich forests. 展开更多
关键词 Canopy structure Multispectral remote sensing Seasonal phenology Subtropical forest Tree species diversity
下载PDF
Hydraulic role in differential stomatal behaviors at two contrasting elevations in three dominant tree species of a mixed coniferous and broad-leaved forest in low subtropical China
18
作者 Liwei Zhu Tianyu Fu +4 位作者 Jie Du Weiting Hu Yanqiong Li Xiuhua Zhao Ping Zhao 《Forest Ecosystems》 SCIE CSCD 2023年第1期102-112,共11页
Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-r... Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-related functional traits were examined for three dominant tree species, Schima superba, Pinus massoniana and Castanopsis chinensis, in a mixed coniferous and broad-leaved forest at two elevations(70 and 360 m above sea level,respectively) in low subtropical China. We hypothesized that trees at higher elevations would develop more efficient strategies of stomatal regulations and greater water transport capacity to cope with more variable hydrothermal conditions than those at lower elevations. Results show that the hydraulic conductivity did not differ between trees at the two elevations, contrary to our expectation. The C. chinensis trees had greater values of leaf mass per unit area(LMA), and the S. superba and C. chinensis trees had greater values of wood density(WD),relative stem water content(RWC), and ratio of sapwood area to leaf area(Hv) at the 360-m elevation than at 70-m elevation. The mean canopy stomatal conductance was greater and more sensitive to vapor deficit pressure at360 m than at 70 m for both S. superba and C. chinensis, while stomatal sensitivity did not differ between the two contrasting elevations for P. massoniana. The midday leaf water potential(ψL) in P. massoniana was significantly more negative at 360 m than at 70 m, but did not vary with increasing elevation in both S. superba and C. chinensis.Variations in Hvcan be related to the differential stomatal behaviors between the two elevations. The variations of stomatal behavior and ψLwith elevation suggested the isohydric strategy for the two broad-leaved species and the anisohydric strategy for the conifer species. The species-specific differences in LMA, WD, RWC, and Hvbetween the two elevations may reflect conservative resource use strategies at the higher elevation. Our findings revealed a close relationship between hydraulic and stomatal behavior and may help better understand the functional responses of forests to changing environmental conditions. 展开更多
关键词 Sap flux Stomatal conductance Leaf water potential Vapor pressure deficit ELEVATION Low subtropical China
下载PDF
Understanding the Development of the 2018/19 Central Pacific El Niño
19
作者 Chengyang GUAN Xin WANG Haijun YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期177-185,共9页
A central Pacific(CP)El Niño event occurred in 2018/19.Previous studies have shown that different mechanisms are responsible for different subtypes of CP El Niño events(CP-I El Niño and CP-II El Niñ... A central Pacific(CP)El Niño event occurred in 2018/19.Previous studies have shown that different mechanisms are responsible for different subtypes of CP El Niño events(CP-I El Niño and CP-II El Niño).By comparing the evolutions of surface winds,ocean temperatures,and heat budgets of the CP-I El Niño,CP-II El Niño,and 2018/19 El Niño,it is illustrated that the subtropical westerly anomalies in the North Pacific,which led to anomalous convergence of Ekman flow and surface warming in the central equatorial Pacific,played an important role in the 2018/19 El Niño event as well as in the CP-II El Niño.Although the off-equatorial forcing played a vital role,it is found that the equatorial forcing acted as a driving(damping)term in boreal spring(summer)of the 2018/19 El Niño.The 2018/19 El Niño provides a timely and vivid example that helps illustrate the proposed mechanism of the CP El Niño,which could be leveraged to improve El Niño predictability. 展开更多
关键词 El Niño subtropical Pacific westerly anomalies Ekman transport
下载PDF
Biomarkers reveal the terrigenous organic matter enrichment in the late Oligocene-early Miocene marine shales in the Ying-Qiong Basin,South China Sea
20
作者 Wenjing Ding Youchuan Li +4 位作者 Lan Lei Li Li Shuchun Yang Yongcai Yang Dujie Hou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期31-53,共23页
The increase of total organic carbon content of the late Oligocene-early Miocene terrigenously-dominated marine shales in the shallower depth intervals was reported in the Ying-Qiong Basin,South China Sea.The organic ... The increase of total organic carbon content of the late Oligocene-early Miocene terrigenously-dominated marine shales in the shallower depth intervals was reported in the Ying-Qiong Basin,South China Sea.The organic enriched lower Sanya Formation shales(early Miocene)have biomarker characteristics of tropical/subtropical plants,with abundant high molecular weight n-alkanes,angiosperm-derived oleanane,rearranged oleananesⅠ,Ⅱ,Ⅱ,tricyclic/tetracyclic terpanes including des-A-oleanane,X,*,Y,Z,Z1 and bicadinanes W,T,T1,R.The biomarker characteristics are suggestive of larger influx of the dominant tropical/subtropical angiosperms in flora under a warming and more humid climate during depositions of the lower Sanya Formation(early Miocene)than the older Lingshui Formation(late Oligocene).The tropical/subtropical angiosperm input was thought as the prime control of terrigenous organic matter enrichment relative to the redox condition,and the coeval sea level changes and seafloor spreading in the South China Sea.Enrichment of the terrigenous organic matter in the early Miocene shales is likely in association with the coeval peak East Asian summer monsoon intensity in the South China Sea. 展开更多
关键词 total organic carbon higher plant-derived biomarkers tropical/subtropical plants East Asian monsoonal climate
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部