针对有源可重构智能表面(reconfigurable intelligent surface,RIS)辅助的同步无线信息与能量传输(simultaneous wireless information and power transfer,SWIPT)系统,提出了一种考虑公平性的能量资源采集分配算法,以解决因乘性衰落导...针对有源可重构智能表面(reconfigurable intelligent surface,RIS)辅助的同步无线信息与能量传输(simultaneous wireless information and power transfer,SWIPT)系统,提出了一种考虑公平性的能量资源采集分配算法,以解决因乘性衰落导致的公平性能量采集性能较差的问题。在有源RIS辅助的SWIPT系统采用功率切割架构实现信息与能量的同步传输,构建了以所有用户中最小的采集能量最大化为目标函数,用户信干噪比、有源RIS和基站发射功率、功率划分因子等满足需求为约束条件的联合资源分配问题。利用交替优化、半正定松弛、连续凸近似、罚函数等技术将不能直接解决的非凸问题转换成标准凸问题,提出了一种交替迭代的公平性采集能量算法。数值仿真结果表明,所提优化算法能够显著提高用户中能量资源分配最少的用户处采集到的能量值,保障通信网络中能量资源分配的公平性。展开更多
In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellu...In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellular user. Taking the maximum allowed transmit power and the minimum data rate requirement into consideration, we formulate the energy efficiency maximization problem as a non-concave fractional programming(FP) problem and then develop a two-loop iterative algorithm to solve it. In the outer loop, we adopt Dinkelbach method to equivalently transform the FP problem into a series of parametric subtractive-form problems, and in the inner loop we solve the parametric subtractive problems based on successive convex approximation and geometric programming method to obtain the solutions satisfying the KarushKuhn-Tucker conditions. Simulation results demonstrate the validity and efficiency of the proposed scheme, and illustrate the impact of different parameters on system performance.展开更多
The joint resource block(RB)allocation and power optimization problem is studied to maximize the sum-rate of the vehicle-to-vehicle(V2V)links in the device-to-device(D2D)-enabled V2V communication system,where one fea...The joint resource block(RB)allocation and power optimization problem is studied to maximize the sum-rate of the vehicle-to-vehicle(V2V)links in the device-to-device(D2D)-enabled V2V communication system,where one feasible cellular user(FCU)can share its RB with multiple V2V pairs.The problem is first formulated as a nonconvex mixed-integer nonlinear programming(MINLP)problem with constraint of the maximum interference power in the FCU links.Using the game theory,two coalition formation algorithms are proposed to accomplish V2V link partitioning and FCU selection,where the transferable utility functions are introduced to minimize the interference among the V2V links and the FCU links for the optimal RB allocation.The successive convex approximation(SCA)is used to transform the original problem into a convex one and the Lagrangian dual method is further applied to obtain the optimal transmit power of the V2V links.Finally,numerical results demonstrate the efficiency of the proposed resource allocation algorithm in terms of the system sum-rate.展开更多
近年来,多用户多输入多输出(Multiple-User Multiple-Input Multiple-Output,MU-MIMO)下行链路的预编码算法设计吸引了越来越多研究者的兴趣。然而目前并没有对基站端已知信道误差概率分布且约束条件为单天线功率约束(Per-Antenna Power...近年来,多用户多输入多输出(Multiple-User Multiple-Input Multiple-Output,MU-MIMO)下行链路的预编码算法设计吸引了越来越多研究者的兴趣。然而目前并没有对基站端已知信道误差概率分布且约束条件为单天线功率约束(Per-Antenna Power Constraints,PAPCS)的情况下的线性预编码算法的研究。针对上述情况,以遍历和速率(Expected Sum Rate)最大化为优化准则,主要基于约束随机逐次凸近似(Constrained Stochastic Successive Convex Approximation,CSSCA)、二阶对偶法、交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)及高斯随机化(Gaussian Randomization)设计了线性预编码算法。所提算法的适用场景更符合实际情况,而且实验仿真结果证明,算法的性能较好。展开更多
文摘针对有源可重构智能表面(reconfigurable intelligent surface,RIS)辅助的同步无线信息与能量传输(simultaneous wireless information and power transfer,SWIPT)系统,提出了一种考虑公平性的能量资源采集分配算法,以解决因乘性衰落导致的公平性能量采集性能较差的问题。在有源RIS辅助的SWIPT系统采用功率切割架构实现信息与能量的同步传输,构建了以所有用户中最小的采集能量最大化为目标函数,用户信干噪比、有源RIS和基站发射功率、功率划分因子等满足需求为约束条件的联合资源分配问题。利用交替优化、半正定松弛、连续凸近似、罚函数等技术将不能直接解决的非凸问题转换成标准凸问题,提出了一种交替迭代的公平性采集能量算法。数值仿真结果表明,所提优化算法能够显著提高用户中能量资源分配最少的用户处采集到的能量值,保障通信网络中能量资源分配的公平性。
基金supported by National Natural Science Foundation of China (No.61501028)Beijing Institute of Technology Research Fund Program for Young Scholars
文摘In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellular user. Taking the maximum allowed transmit power and the minimum data rate requirement into consideration, we formulate the energy efficiency maximization problem as a non-concave fractional programming(FP) problem and then develop a two-loop iterative algorithm to solve it. In the outer loop, we adopt Dinkelbach method to equivalently transform the FP problem into a series of parametric subtractive-form problems, and in the inner loop we solve the parametric subtractive problems based on successive convex approximation and geometric programming method to obtain the solutions satisfying the KarushKuhn-Tucker conditions. Simulation results demonstrate the validity and efficiency of the proposed scheme, and illustrate the impact of different parameters on system performance.
基金the National Natural Scientific Foundation of China(61771291,61571272)the Major Science and Technological Innovation Project of Shandong Province(2020CXGC010109).
文摘The joint resource block(RB)allocation and power optimization problem is studied to maximize the sum-rate of the vehicle-to-vehicle(V2V)links in the device-to-device(D2D)-enabled V2V communication system,where one feasible cellular user(FCU)can share its RB with multiple V2V pairs.The problem is first formulated as a nonconvex mixed-integer nonlinear programming(MINLP)problem with constraint of the maximum interference power in the FCU links.Using the game theory,two coalition formation algorithms are proposed to accomplish V2V link partitioning and FCU selection,where the transferable utility functions are introduced to minimize the interference among the V2V links and the FCU links for the optimal RB allocation.The successive convex approximation(SCA)is used to transform the original problem into a convex one and the Lagrangian dual method is further applied to obtain the optimal transmit power of the V2V links.Finally,numerical results demonstrate the efficiency of the proposed resource allocation algorithm in terms of the system sum-rate.
文摘近年来,多用户多输入多输出(Multiple-User Multiple-Input Multiple-Output,MU-MIMO)下行链路的预编码算法设计吸引了越来越多研究者的兴趣。然而目前并没有对基站端已知信道误差概率分布且约束条件为单天线功率约束(Per-Antenna Power Constraints,PAPCS)的情况下的线性预编码算法的研究。针对上述情况,以遍历和速率(Expected Sum Rate)最大化为优化准则,主要基于约束随机逐次凸近似(Constrained Stochastic Successive Convex Approximation,CSSCA)、二阶对偶法、交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)及高斯随机化(Gaussian Randomization)设计了线性预编码算法。所提算法的适用场景更符合实际情况,而且实验仿真结果证明,算法的性能较好。