Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accurac...Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm.展开更多
A highly precise and timely diagnosis technology can help effectively monitor and adjust the sucker rod production system(SRPS)used in oil wells to ensure a safe and efficient production.The current diagnosis method i...A highly precise and timely diagnosis technology can help effectively monitor and adjust the sucker rod production system(SRPS)used in oil wells to ensure a safe and efficient production.The current diagnosis method is pattern recognition of a dynamometer card(DC)based on feature extraction and perceptron.The premise of this method is that the training and target data have the same distribution.However,the training data are collected from a field SRPS with different system parameters designed to adapt to production conditions,which may significantly affect the diagnostic accuracy.To address this issue,in this study,an improved model of the sucker rod string(SRS)is derived by adding faultparameter dimensions,with which DCs under 16 working conditions could be generated.Subsequently an adaptive diagnosis method is proposed by taking simulated DCs generated near the working point of the target SRPS as training data.Meanwhile,to further improve the accuracy of the proposed method,the DC features are improved by relative normalization and using additional features of the DC position to increase the distance between different types of samples.The parameters of the perceptron are optimized to promote its discriminability.Finally,the accuracy and real-time performance of the proposed adaptive diagnosis method are validated using field data.展开更多
基金the National Natural Science Foundation of China (Grant No. 61403040)
文摘Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm.
基金support by the Major Scientific and Technological Projects of CNPC under Grant no.ZD2019-184-004the National Research Council of Science and Technology Major Project under Grant no.2016ZX05042004+1 种基金the Fundamental Research Funds for the Central University under Grant no.20CX02307Athe Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment under Grant no.20CX02307A
文摘A highly precise and timely diagnosis technology can help effectively monitor and adjust the sucker rod production system(SRPS)used in oil wells to ensure a safe and efficient production.The current diagnosis method is pattern recognition of a dynamometer card(DC)based on feature extraction and perceptron.The premise of this method is that the training and target data have the same distribution.However,the training data are collected from a field SRPS with different system parameters designed to adapt to production conditions,which may significantly affect the diagnostic accuracy.To address this issue,in this study,an improved model of the sucker rod string(SRS)is derived by adding faultparameter dimensions,with which DCs under 16 working conditions could be generated.Subsequently an adaptive diagnosis method is proposed by taking simulated DCs generated near the working point of the target SRPS as training data.Meanwhile,to further improve the accuracy of the proposed method,the DC features are improved by relative normalization and using additional features of the DC position to increase the distance between different types of samples.The parameters of the perceptron are optimized to promote its discriminability.Finally,the accuracy and real-time performance of the proposed adaptive diagnosis method are validated using field data.