This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equ...This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are numerically solved by using an advanced numeric technique. Favorability comparisons with previously published work are presented. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.展开更多
针对锚线斜拉作用下吸力筒与砂土相互作用的微观特征仍不清楚这一问题,采用离散元(discrete element method,简称DEM)-有限元(finite element method,简称FEM)耦合数值方法,从宏观到微观角度分析系泊点深度对吸力筒基础抗拔性能的影响...针对锚线斜拉作用下吸力筒与砂土相互作用的微观特征仍不清楚这一问题,采用离散元(discrete element method,简称DEM)-有限元(finite element method,简称FEM)耦合数值方法,从宏观到微观角度分析系泊点深度对吸力筒基础抗拔性能的影响。在建模中,采用FEM中有限元网格来模拟吸力筒,采用DEM中颗粒来模拟吸力筒周围砂土,并通过控制滚轴运动来模拟锚线的拉作用。结果表明:吸力筒的拉力-位移曲线存在峰值拉力,且与不同系泊点深度下吸力筒运动模式有密切关系;吸力筒旋转方向、拔出位移的反转临界系泊深度点位于吸力筒从顶部往下h=66.7%深度附近(即吸力筒深度的2/3处,h为系泊深度)。此外,从颗粒尺度分析了土体变形及破坏行为,最终确定了吸力筒-颗粒土相互作用的破坏模式。研究结果表明,忽略锚线的系泊点深度将会导致误判吸力筒的承载能力及与土体的破坏模式。展开更多
This paper is built upon the previous developments on lateral earth pressure by providing a series of analytical expressions that may be used to evaluate vertical profiles of the effective stress and the corresponding...This paper is built upon the previous developments on lateral earth pressure by providing a series of analytical expressions that may be used to evaluate vertical profiles of the effective stress and the corresponding suction stress under steady-state flow conditions. Suction stress profile is modeled for one layer sand near the ground above the water level under hydrostatic conditions. By definition, the absolute magnitude of suction stress depends on both the magnitude of the effective stress parameter and matric suction itself. Thus, by developing the Rankine’s relations in seismic state, the composing method of active and passive surfaces in sides of unbraced sheet pile is examinated and the effects of soil parameter on those surfaces are evaluated by a similar process. The relations described the quantitative evaluation of lateral earth pressure on sheet pile and the effects of unsaturated layer on bending moment and embedded depth of sheet pile in soil.展开更多
文摘This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are numerically solved by using an advanced numeric technique. Favorability comparisons with previously published work are presented. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.
文摘针对锚线斜拉作用下吸力筒与砂土相互作用的微观特征仍不清楚这一问题,采用离散元(discrete element method,简称DEM)-有限元(finite element method,简称FEM)耦合数值方法,从宏观到微观角度分析系泊点深度对吸力筒基础抗拔性能的影响。在建模中,采用FEM中有限元网格来模拟吸力筒,采用DEM中颗粒来模拟吸力筒周围砂土,并通过控制滚轴运动来模拟锚线的拉作用。结果表明:吸力筒的拉力-位移曲线存在峰值拉力,且与不同系泊点深度下吸力筒运动模式有密切关系;吸力筒旋转方向、拔出位移的反转临界系泊深度点位于吸力筒从顶部往下h=66.7%深度附近(即吸力筒深度的2/3处,h为系泊深度)。此外,从颗粒尺度分析了土体变形及破坏行为,最终确定了吸力筒-颗粒土相互作用的破坏模式。研究结果表明,忽略锚线的系泊点深度将会导致误判吸力筒的承载能力及与土体的破坏模式。
文摘This paper is built upon the previous developments on lateral earth pressure by providing a series of analytical expressions that may be used to evaluate vertical profiles of the effective stress and the corresponding suction stress under steady-state flow conditions. Suction stress profile is modeled for one layer sand near the ground above the water level under hydrostatic conditions. By definition, the absolute magnitude of suction stress depends on both the magnitude of the effective stress parameter and matric suction itself. Thus, by developing the Rankine’s relations in seismic state, the composing method of active and passive surfaces in sides of unbraced sheet pile is examinated and the effects of soil parameter on those surfaces are evaluated by a similar process. The relations described the quantitative evaluation of lateral earth pressure on sheet pile and the effects of unsaturated layer on bending moment and embedded depth of sheet pile in soil.