Cookies are considered a fundamental means of web application services for authenticating various Hypertext Transfer Protocol(HTTP)requests andmaintains the states of clients’information over the Internet.HTTP cookie...Cookies are considered a fundamental means of web application services for authenticating various Hypertext Transfer Protocol(HTTP)requests andmaintains the states of clients’information over the Internet.HTTP cookies are exploited to carry client patterns observed by a website.These client patterns facilitate the particular client’s future visit to the corresponding website.However,security and privacy are the primary concerns owing to the value of information over public channels and the storage of client information on the browser.Several protocols have been introduced that maintain HTTP cookies,but many of those fail to achieve the required security,or require a lot of resource overheads.In this article,we have introduced a lightweight Elliptic Curve Cryptographic(ECC)based protocol for authenticating client and server transactions to maintain the privacy and security of HTTP cookies.Our proposed protocol uses a secret key embedded within a cookie.The proposed protocol ismore efficient and lightweight than related protocols because of its reduced computation,storage,and communication costs.Moreover,the analysis presented in this paper confirms that proposed protocol resists various known attacks.展开更多
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in...In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.展开更多
Flour serves as one of the primary ingredients of cookies,which affects dough properties,physical changes during baking,and post-baking cookie properties.Two gluten-free cookie formulations were developed with the goa...Flour serves as one of the primary ingredients of cookies,which affects dough properties,physical changes during baking,and post-baking cookie properties.Two gluten-free cookie formulations were developed with the goal of use as inclusions in frozen desserts.Blonde and chocolate cookies were made with sorghum flour or all-purpose wheat flour and then evaluated for physical and chemical properties.To determine functionality in a frozen state,texture analysis was conducted on cookies at−30℃,−17°C,and 20℃,replicating various ice cream storage temperatures.To simulate the process effect of incorporating the product into a frozen dessert,cookies were crumbled mechanically,and the crumbles were separated based on size.When evaluating cookies,no significant differences(P<0.05)were observed in width(W),thickness(T),spread,and W/T ratio for flour source within formula.Blonde cookies had lower moisture contents than chocolate cookies;further,blonde cookies made from sorghum flour had less moisture than those made with wheat flour.As the cookie temperature decreased from 20℃to−17℃,cookie hardness increased,with flour type having no effect.Within formula,cookies had similar instrumental color parameters.However,blonde cookies made from sorghum flour produced more smaller-sized pieces than those made from wheat flour.The results of this study demonstrate that sorghum flour cookies have desirable properties for use as inclusions in ice cream and other frozen desserts.展开更多
基金support from Abu Dhabi University’s Office of Research and Sponsored Programs Grant Number:19300810.
文摘Cookies are considered a fundamental means of web application services for authenticating various Hypertext Transfer Protocol(HTTP)requests andmaintains the states of clients’information over the Internet.HTTP cookies are exploited to carry client patterns observed by a website.These client patterns facilitate the particular client’s future visit to the corresponding website.However,security and privacy are the primary concerns owing to the value of information over public channels and the storage of client information on the browser.Several protocols have been introduced that maintain HTTP cookies,but many of those fail to achieve the required security,or require a lot of resource overheads.In this article,we have introduced a lightweight Elliptic Curve Cryptographic(ECC)based protocol for authenticating client and server transactions to maintain the privacy and security of HTTP cookies.Our proposed protocol uses a secret key embedded within a cookie.The proposed protocol ismore efficient and lightweight than related protocols because of its reduced computation,storage,and communication costs.Moreover,the analysis presented in this paper confirms that proposed protocol resists various known attacks.
基金Supported by Heilongjiang Provincial Fruit Tree Modernization Agro-industrial Technology Collaborative Innovation and Promotion System Project(2019-13)。
文摘In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.
基金The authors would like to extend an expression of gratitude to the USDA for analyzing particle sizes on the two flour samples.Masters'candidate Janae Brown in the Food Science Institute at Kansas State University(Manhattan,KS,USA)assisted in taking pictures for this publication.The authors acknowledge support from the Kansas State University Research and Extension,publication number 23-087-J.Mention of trade names or commercial products in this publication is solely for providing specific information and does not imply recommendation or endorsement by the U.S.Department of Agriculture.The USDA is an equal opportunity provider and employer.This work was supported in part by the U.S.Department of Agriculture,Agricultural Research Service.
文摘Flour serves as one of the primary ingredients of cookies,which affects dough properties,physical changes during baking,and post-baking cookie properties.Two gluten-free cookie formulations were developed with the goal of use as inclusions in frozen desserts.Blonde and chocolate cookies were made with sorghum flour or all-purpose wheat flour and then evaluated for physical and chemical properties.To determine functionality in a frozen state,texture analysis was conducted on cookies at−30℃,−17°C,and 20℃,replicating various ice cream storage temperatures.To simulate the process effect of incorporating the product into a frozen dessert,cookies were crumbled mechanically,and the crumbles were separated based on size.When evaluating cookies,no significant differences(P<0.05)were observed in width(W),thickness(T),spread,and W/T ratio for flour source within formula.Blonde cookies had lower moisture contents than chocolate cookies;further,blonde cookies made from sorghum flour had less moisture than those made with wheat flour.As the cookie temperature decreased from 20℃to−17℃,cookie hardness increased,with flour type having no effect.Within formula,cookies had similar instrumental color parameters.However,blonde cookies made from sorghum flour produced more smaller-sized pieces than those made from wheat flour.The results of this study demonstrate that sorghum flour cookies have desirable properties for use as inclusions in ice cream and other frozen desserts.