To understand virus infection situation of integrated demonstration and regional test sugarcane varieties in national sugarcane system in Guilin City,Guangxi Province,leaf samples with or without symptoms were collect...To understand virus infection situation of integrated demonstration and regional test sugarcane varieties in national sugarcane system in Guilin City,Guangxi Province,leaf samples with or without symptoms were collected from 37 sugarcane varieties,and five kinds of viruses were detected by RT-PCR with specific primers,including Sugarcane yellow leaf virus( SCYLV),Sugarcane streak mosaic virus( SCSMV),Sorghum mosaic virus( SrM V),Sugarcane mosaic virus( SCMV) and Sugarcane bacilliform virus( SCBV). The results showed that SCYLV was detected from four sugarcane varieties,and the detection rate was10. 81%; SCSMV was detected from five sugarcane varieties,and the detection rate was 13. 51%; SrM V was detected from four sugarcane varieties,and the detection rate was 10. 81%; SCMV had not been found; SCBV was detected from 27 sugarcane varieties,and the detection rate was 72. 9%. Additionally,mixed infection of different viruses was widespread,and the total mixed infection rate was 21. 62%. Thus,integrated demonstration and regional test sugarcane varieties in national sugarcane system in Guilin City had been seriously infected by viruses,and mixed infection of different viruses was common. The paper will provide a reference for breeding and popularization of antiviral sugarcane varieties.展开更多
病程相关蛋白10(pathogenesis related protein 10,PR10)在植物抵抗病毒侵染中发挥重要作用。前期以甘蔗线条花叶病毒(Sugarcane streak mosaic virus,SCSMV)编码的RNA沉默抑制子P1为诱饵,筛选获得一个甘蔗ShPR10蛋白。为探究ShPR10在...病程相关蛋白10(pathogenesis related protein 10,PR10)在植物抵抗病毒侵染中发挥重要作用。前期以甘蔗线条花叶病毒(Sugarcane streak mosaic virus,SCSMV)编码的RNA沉默抑制子P1为诱饵,筛选获得一个甘蔗ShPR10蛋白。为探究ShPR10在甘蔗应答SCSMV侵染过程中的功能,利用同源克隆技术克隆甘蔗ShPR10基因并对其编码蛋白进行生物信息学分析,利用绿色荧光蛋白融合表达法分析ShPR10蛋白的亚细胞定位,采用酵母双杂交和双分子荧光互补技术验证ShPR10与SCSMV P1的互作关系,采用农杆菌共浸润瞬时表达系统和Western blot技术分析ShPR10对P1沉默抑制子活性的影响。结果显示,甘蔗ShPR10基因开放阅读框全长570 bp,编码一个不稳定亲水蛋白,蛋白分子量为21.17 kD,等电点为4.77,含有一个P-loop基序,不含跨膜结构域和信号肽。ShPR10二级结构包含51.85%的无规则卷曲、35.98%的α-螺旋、7.41%的延伸链和4.76%的β-转角。ShPR10蛋白与玉米ZmPR10蛋白的氨基酸序列相似性高达91.53%,两者在进化树上聚为一个分支。ShPR10定位在细胞质和细胞核,与SCSMV P1在酵母细胞和烟草细胞中存在互作关系。ShPR10本身不具有沉默抑制子活性,其表达削弱了P1的沉默抑制子活性,但对P1蛋白的含量无明显影响。综上,ShPR10可能通过结合P1来削弱P1的沉默抑制子活性,从而提高甘蔗对SCSMV的抗性。展开更多
Sugarcane mosaic virus (SCMV) causes substantial losses of grain yield and forage biomass in susceptible maize worldwide. A major quantitative trait locus, Scmvl, has been identified to impart strong resistance to S...Sugarcane mosaic virus (SCMV) causes substantial losses of grain yield and forage biomass in susceptible maize worldwide. A major quantitative trait locus, Scmvl, has been identified to impart strong resistance to SCMV at the early infection stage. Here, we demonstrate that ZmTrxh, encoding an atypical h-type thioredoxin, is the causal gene at Scmvl, and that its transcript abundance correlated strongly with maize resistance to SCMV. ZmTrxh alleles, whether they are resistant or susceptible, share the identical coding/proximal promoter regions, but vary in the upstream regulatory regions. ZmTrxh lacks two canon- ical cysteines in the thioredoxin active-site motif and exists uniquely in the maize genome. Because of this, ZmTrxh is unable to reduce disulfide bridges but possesses a strong molecular chaperone-like activity. ZmTrxh is dispersed in maize cytoplasm to suppress SCMV viral RNA accumulation. Moreover, ZmTrxh- mediated maize resistance to SCMV showed no obvious correlation with the salicylic acid- and jasmonic acid-related defense signaling pathways. Taken together, our results indicate that ZmTrxh exhibits a distinct defense profile in maize resistance to SCMV, differing from previously characterized dominant or recessive potyvirus resistance genes.展开更多
The complete sequence of a potyvirus from maize in Zhejiang Province was determined. The RNA was 9596 nucleotides long, excluding the 3'-poly (A) tail, and there was a single long open reading frame (ORF) of 9192 ...The complete sequence of a potyvirus from maize in Zhejiang Province was determined. The RNA was 9596 nucleotides long, excluding the 3'-poly (A) tail, and there was a single long open reading frame (ORF) of 9192 nts encoding a 346.1 ku polyprotein. The polyprotein had substantial amino acid sequence homology with those encoded by the RNAs of a Chinese isolate of sorghum mosaic virus (SrMV-C) and a Bulgarian isolate of maize dwarf mosaic virus, but it was most closely related to sugarcane mosaic virus (SCMV) isolates, for which only partial sequences have been published. According to the published criteria for distinguishing potyviruses, the sequence reported here is clearly a strain of SCMV, but it also showed a surprisingly high amino acid homology with SrMV-C in the HC-Pro, P3 and Cl proteins.展开更多
Dear Editor,Sugarcane mosaic virus (SCMV) causes severe viral diseases in maize worldwide (Fuchs and Gruntzig, 1995), resulting in significant losses in grain and forage yield in susceptible cultivars of maize and...Dear Editor,Sugarcane mosaic virus (SCMV) causes severe viral diseases in maize worldwide (Fuchs and Gruntzig, 1995), resulting in significant losses in grain and forage yield in susceptible cultivars of maize and related crops. The most promising solution is to cultivate resistant varieties, which contribute to sustainable crop production. Two epistatically interacting major SCMV resistance loci (Scmvl and Scmv2) are required to confer complete resistance against SCMV in the resistant nearisogenic line F7RPJRR (the letters left of the slash refer to the genotype at Scmv2 on chromosome 3 and those on the right refer to the genotype at Scmvl on chromosome 6, with R indicating a resistance allele and S a susceptibility allele) (Xing et al., 2006).展开更多
基金Supported by Special Fund of China Agricultural(Sugar)Industry Research System(CARS-170301)Basal Research Fund of Central Public Welfare Research Institutes(1630052016010)
文摘To understand virus infection situation of integrated demonstration and regional test sugarcane varieties in national sugarcane system in Guilin City,Guangxi Province,leaf samples with or without symptoms were collected from 37 sugarcane varieties,and five kinds of viruses were detected by RT-PCR with specific primers,including Sugarcane yellow leaf virus( SCYLV),Sugarcane streak mosaic virus( SCSMV),Sorghum mosaic virus( SrM V),Sugarcane mosaic virus( SCMV) and Sugarcane bacilliform virus( SCBV). The results showed that SCYLV was detected from four sugarcane varieties,and the detection rate was10. 81%; SCSMV was detected from five sugarcane varieties,and the detection rate was 13. 51%; SrM V was detected from four sugarcane varieties,and the detection rate was 10. 81%; SCMV had not been found; SCBV was detected from 27 sugarcane varieties,and the detection rate was 72. 9%. Additionally,mixed infection of different viruses was widespread,and the total mixed infection rate was 21. 62%. Thus,integrated demonstration and regional test sugarcane varieties in national sugarcane system in Guilin City had been seriously infected by viruses,and mixed infection of different viruses was common. The paper will provide a reference for breeding and popularization of antiviral sugarcane varieties.
文摘Sugarcane mosaic virus (SCMV) causes substantial losses of grain yield and forage biomass in susceptible maize worldwide. A major quantitative trait locus, Scmvl, has been identified to impart strong resistance to SCMV at the early infection stage. Here, we demonstrate that ZmTrxh, encoding an atypical h-type thioredoxin, is the causal gene at Scmvl, and that its transcript abundance correlated strongly with maize resistance to SCMV. ZmTrxh alleles, whether they are resistant or susceptible, share the identical coding/proximal promoter regions, but vary in the upstream regulatory regions. ZmTrxh lacks two canon- ical cysteines in the thioredoxin active-site motif and exists uniquely in the maize genome. Because of this, ZmTrxh is unable to reduce disulfide bridges but possesses a strong molecular chaperone-like activity. ZmTrxh is dispersed in maize cytoplasm to suppress SCMV viral RNA accumulation. Moreover, ZmTrxh- mediated maize resistance to SCMV showed no obvious correlation with the salicylic acid- and jasmonic acid-related defense signaling pathways. Taken together, our results indicate that ZmTrxh exhibits a distinct defense profile in maize resistance to SCMV, differing from previously characterized dominant or recessive potyvirus resistance genes.
基金This work was supported by Zhejiang Provincial Foundation for Natural Sciences (RC9604), a special grant from Zhejiang Provincial Department of Science and Technology (001107557) the 10th Five-Year Research Programme of Zhejiang Province (011102181).
文摘The complete sequence of a potyvirus from maize in Zhejiang Province was determined. The RNA was 9596 nucleotides long, excluding the 3'-poly (A) tail, and there was a single long open reading frame (ORF) of 9192 nts encoding a 346.1 ku polyprotein. The polyprotein had substantial amino acid sequence homology with those encoded by the RNAs of a Chinese isolate of sorghum mosaic virus (SrMV-C) and a Bulgarian isolate of maize dwarf mosaic virus, but it was most closely related to sugarcane mosaic virus (SCMV) isolates, for which only partial sequences have been published. According to the published criteria for distinguishing potyviruses, the sequence reported here is clearly a strain of SCMV, but it also showed a surprisingly high amino acid homology with SrMV-C in the HC-Pro, P3 and Cl proteins.
文摘Dear Editor,Sugarcane mosaic virus (SCMV) causes severe viral diseases in maize worldwide (Fuchs and Gruntzig, 1995), resulting in significant losses in grain and forage yield in susceptible cultivars of maize and related crops. The most promising solution is to cultivate resistant varieties, which contribute to sustainable crop production. Two epistatically interacting major SCMV resistance loci (Scmvl and Scmv2) are required to confer complete resistance against SCMV in the resistant nearisogenic line F7RPJRR (the letters left of the slash refer to the genotype at Scmv2 on chromosome 3 and those on the right refer to the genotype at Scmvl on chromosome 6, with R indicating a resistance allele and S a susceptibility allele) (Xing et al., 2006).