Huge quantity of effluents is generated from pharmaceutical industries attributed to their wide array of manufacturing and maintenance processes. Wastewaters from pharmaceuticals are characterized by the presence of s...Huge quantity of effluents is generated from pharmaceutical industries attributed to their wide array of manufacturing and maintenance processes. Wastewaters from pharmaceuticals are characterized by the presence of solids, pH, temperature, biodegradable organic compounds, unusual turbidity, hardness and conductivity. Wastewater from pharmaceutical industry arising from various units is categorised as low total dissolved solids (LTDS) and high total dissolved solids (HTDS) based on the concentration of total dissolved solids. The present study focuses on treatment of LTDS using a combination of biological treatment followed by membrane process, reverse osmosis. This research presents the results from the pilot-scale studies focussed on biological treatment using SBR as pre-treatment for RO towards the removal of LTDS effluent. Three-month data on a daily basis is presented. The efficiency of the process was tested with a reduction in parameters like total dissolved solids and chemical oxygen demand. SBR tested for its suitability as a preliminary treatment for the Reverse Osmosis process during the months of August-October. The highest and lowest TDS reduction was recorded as 9.72% and ?4.67% in the month of August. The highest and least COD reduction was recorded as 87.28% and 80.66% in the same month. The highest and lowest TDS reduction was recorded as 0.84% and ?7.92% in the month of September. The highest and least COD reduction was recorded as 87.07% and 83.28% in the same month. The performance of RO tested for its efficiency in removing the TDS and COD after SBR as pre-treatment. The highest and lowest TDS reduction was recorded as 94.93% and 93.27% in the month of August. The highest and least COD reduction was recorded as 96.84% and 90.19% in the same month. The highest and lowest TDS reduction was recorded at 96.53% and 91.25% in the month of October. The highest and least COD reduction was recorded as 94.31% and 72.57% in the same month. SBR has proved to be a promising solution for pre-treatment removing all substances that might result in membrane fouling. Hence, the present study concludes that a combination of SBR and RO will be a promising solution for effective removal of TDS and COD from pharmaceutical wastewaters.展开更多
Treatment of pharmaceutical wastewaters is a challenging task owing to their complexity and pollution load, variability in strength of waste streams accompanied with shock loads. Since no single treatment system is a ...Treatment of pharmaceutical wastewaters is a challenging task owing to their complexity and pollution load, variability in strength of waste streams accompanied with shock loads. Since no single treatment system is a viable option, integration of existing systems with advanced physical/chemical processes has been gaining attention for treatment of pharmaceutical wastewater. In the present study, two biological treatment methods were evaluated for their efficiency as pre-treatment system for RO which are sequencing batch reactor and membrane bioreactor. Efficiency of biological treatments tested SBR and MBR was pre-sented in terms of percentage removal of physico-chemical parameters. Total dissolved solids removal by SBR was 31.82% while MBR showed 29.25% reduction. Chemical oxygen demand removal by SBR was 69.54% while MBR showed 30.35% removal. Efficiency of combined treatments SBR-RO and MBR-RO was presented in terms of removal of total dissolved solids, COD and ammonia. TDS removal was the highest in the combination of SBR-RO with 95.94% removal, while MBR-RO combination resulted in 87.29% removal. Chemical oxygen demand was achieved maximum with the combination of MBR-RO 92.33% while competitive results were achieved with the combination SBR-RO also with 88.62% removal. Removal of ammonia was maximum with the combination SBR-RO 87.5%, while competitive results were obtained with MBR-RO 85.51%. From the results, it can be understood that SBR was efficient in removing ammonia, total dissolved solids and was equally competent in removing chemical oxygen demand. This study concludes that combined treatment of SBR-RO proves to be promising in treating pharmaceutical wastewaters.展开更多
文摘Huge quantity of effluents is generated from pharmaceutical industries attributed to their wide array of manufacturing and maintenance processes. Wastewaters from pharmaceuticals are characterized by the presence of solids, pH, temperature, biodegradable organic compounds, unusual turbidity, hardness and conductivity. Wastewater from pharmaceutical industry arising from various units is categorised as low total dissolved solids (LTDS) and high total dissolved solids (HTDS) based on the concentration of total dissolved solids. The present study focuses on treatment of LTDS using a combination of biological treatment followed by membrane process, reverse osmosis. This research presents the results from the pilot-scale studies focussed on biological treatment using SBR as pre-treatment for RO towards the removal of LTDS effluent. Three-month data on a daily basis is presented. The efficiency of the process was tested with a reduction in parameters like total dissolved solids and chemical oxygen demand. SBR tested for its suitability as a preliminary treatment for the Reverse Osmosis process during the months of August-October. The highest and lowest TDS reduction was recorded as 9.72% and ?4.67% in the month of August. The highest and least COD reduction was recorded as 87.28% and 80.66% in the same month. The highest and lowest TDS reduction was recorded as 0.84% and ?7.92% in the month of September. The highest and least COD reduction was recorded as 87.07% and 83.28% in the same month. The performance of RO tested for its efficiency in removing the TDS and COD after SBR as pre-treatment. The highest and lowest TDS reduction was recorded as 94.93% and 93.27% in the month of August. The highest and least COD reduction was recorded as 96.84% and 90.19% in the same month. The highest and lowest TDS reduction was recorded at 96.53% and 91.25% in the month of October. The highest and least COD reduction was recorded as 94.31% and 72.57% in the same month. SBR has proved to be a promising solution for pre-treatment removing all substances that might result in membrane fouling. Hence, the present study concludes that a combination of SBR and RO will be a promising solution for effective removal of TDS and COD from pharmaceutical wastewaters.
文摘Treatment of pharmaceutical wastewaters is a challenging task owing to their complexity and pollution load, variability in strength of waste streams accompanied with shock loads. Since no single treatment system is a viable option, integration of existing systems with advanced physical/chemical processes has been gaining attention for treatment of pharmaceutical wastewater. In the present study, two biological treatment methods were evaluated for their efficiency as pre-treatment system for RO which are sequencing batch reactor and membrane bioreactor. Efficiency of biological treatments tested SBR and MBR was pre-sented in terms of percentage removal of physico-chemical parameters. Total dissolved solids removal by SBR was 31.82% while MBR showed 29.25% reduction. Chemical oxygen demand removal by SBR was 69.54% while MBR showed 30.35% removal. Efficiency of combined treatments SBR-RO and MBR-RO was presented in terms of removal of total dissolved solids, COD and ammonia. TDS removal was the highest in the combination of SBR-RO with 95.94% removal, while MBR-RO combination resulted in 87.29% removal. Chemical oxygen demand was achieved maximum with the combination of MBR-RO 92.33% while competitive results were achieved with the combination SBR-RO also with 88.62% removal. Removal of ammonia was maximum with the combination SBR-RO 87.5%, while competitive results were obtained with MBR-RO 85.51%. From the results, it can be understood that SBR was efficient in removing ammonia, total dissolved solids and was equally competent in removing chemical oxygen demand. This study concludes that combined treatment of SBR-RO proves to be promising in treating pharmaceutical wastewaters.