Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv...Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.展开更多
In order to investigate the change of ecological characteristics due to the decrease of COD/SO_4^(2-) ratio during sulfate reduction, continuous-flew tests were conducted in an acidogenic sulfate-reducing reactor with...In order to investigate the change of ecological characteristics due to the decrease of COD/SO_4^(2-) ratio during sulfate reduction, continuous-flew tests were conducted in an acidogenic sulfate-reducing reactor with molasses wastewater as sole organic carbon source and sodium snlfate as electron acceptor, and the change of pH value, oxidation reduction potential (ORP), volatile fat acids (VFAs), alkalinity (ALK) and the predominant populations with COD/SO_4^(2-) ratio decreasing from 4.2 to 2.0 were investigated. The experimental results demonstrated that, with decreasing COD/SO_4^(2-) ratio, ORP and ALK increased, pH value decreased, and the proportion of acetic acid in terminal products decreased significantly, and a stable -type microbial community with high COD/SO_4^(2-) ratio was converted into a sub -stable -type one with low COD/SO_4^(2-) ratio.展开更多
基金supported by the National Natural Science Foundation of China(21506194,21676255)the Provincial Natural Science Foundation of Zhejiang Province(LY16B070011)the Commission of Science and Technology of Zhejiang Province(2017C33106,2017C03007)~~
文摘Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 50208006)the Scientific Research Foundation of Harbin Institute of Technology(Grant No. HIT. 2001.51)
文摘In order to investigate the change of ecological characteristics due to the decrease of COD/SO_4^(2-) ratio during sulfate reduction, continuous-flew tests were conducted in an acidogenic sulfate-reducing reactor with molasses wastewater as sole organic carbon source and sodium snlfate as electron acceptor, and the change of pH value, oxidation reduction potential (ORP), volatile fat acids (VFAs), alkalinity (ALK) and the predominant populations with COD/SO_4^(2-) ratio decreasing from 4.2 to 2.0 were investigated. The experimental results demonstrated that, with decreasing COD/SO_4^(2-) ratio, ORP and ALK increased, pH value decreased, and the proportion of acetic acid in terminal products decreased significantly, and a stable -type microbial community with high COD/SO_4^(2-) ratio was converted into a sub -stable -type one with low COD/SO_4^(2-) ratio.