The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording the...The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording thermometric instrument contrastively. The main factors, including emissivity, distance, angle and dust concentration that affect the temperature measurement precision, are analyzed. The regression equations about the individual factors and comprehensive factors are obtained by analyzing test data. The application of the regression equations improves the precision of the thermal infrared imager. The geometric information lost in traditional infrared thermometry is determined by visualization grid method and interpolation method, the relationship between the infrared imager and geometry information is established. The geometry location can be measured exactly.展开更多
To investigate the relationship between nonlinear parameters and spontaneous combustion tendency of sulfide ores, nine different sulfide ore samples were taken from a pyrite mine in China, and induced spontaneous comb...To investigate the relationship between nonlinear parameters and spontaneous combustion tendency of sulfide ores, nine different sulfide ore samples were taken from a pyrite mine in China, and induced spontaneous combustion experiment was carried out in the laboratory. Different stages of the induced spontaneous combustion process were studied by integrating wavelet technology and nonlinear dynamics theory. The results show that ignition points of all the ore samples are above 330 ℃, indicating that sulfide ores of the pyrite mine are difficult to combust spontaneously under normal mining conditions. Spontaneous combustion process includes three stages: incubation stage, development stage and approaching stage. The average temperature rising rate of the three stages are 1.0 ~C/min, 2.0 ~C/min and 4.2 ~C/min, respectively. During the spontaneous combustion process, mean values of approximate entropy and correlation dimension increase at first, and then decrease in the following stage. The mean value of the maximum Lyapunov exponent increases with the passage of reaction time. In a whole, correlation among the three nonlinear parameters firstly weakens, then enhances, and the best correlation period is at approaching stage. As ignition point increases, the maximum Lyapunov exponent of approaching stage decreases. Therefore, combustible tendency of sulfide ores could be qualitatively evaluated based on the maximum Lyapunov exponent of this stage.展开更多
in order to achieve a more efficient way to accurately detect the position of the fire source of spontaneous combustion underground mine, a simple fire source locating method, based on infrared scanning system which c...in order to achieve a more efficient way to accurately detect the position of the fire source of spontaneous combustion underground mine, a simple fire source locating method, based on infrared scanning system which can determine the point where the highest temperature on the surface of igniting ores occurs, was proposed. First, the differential equations that describe heat flow in ore body were presented and the relationship between the surface temperature distribution and the depth and intensity of inner fire source was established with a relatively simple heat transfer model. With the solution of equation, the expression of the relationship between the surface temperature distribution and the inner fire source was deduced and the mathematical-physical model of heat transfer process was set up. Then, with the model, visualization of fire source on the basis of MATLAB simulation platform was realized. The results show that: 1) within 10 m, when the detecting depth is less than 2 m, the temperature perturbation on ores surface can change rapidly, and then slowly; after 4 m, in contrast, it changes very little, and is even close to zero at 10 m; 2) When it is close to self-ignition duration and the detective depths are 2, 5 and 10 m, respectively, the maximum temperature differences are correspondingly 0.5, 0.04 and 0.005 ℃ in the scope of 1 m×1 m; under the same condition, the maximum temperature differences are 1.391, 0.136 and 0.018 ℃, respectively, in the scope of 2 m×2 m. Therefore, this system can be used to measure the temperature differences on the surface of ore body and determine the highest temperature point directly. Also, it is possible to determine the depth of fire source and its intensity by locating method of fire source indirectly.展开更多
To explore a new evaluation method for spontaneous combustion tendency of different areas in sulfide ore heap, ore samples from a pyrite mine in China were taken as experimental materials, and the temperature variatio...To explore a new evaluation method for spontaneous combustion tendency of different areas in sulfide ore heap, ore samples from a pyrite mine in China were taken as experimental materials, and the temperature variations of the measuring points of simulated ore heap were measured. Combined with wavelet transform and nonlinear parameters extraction, a new method for spontaneous combustion tendency of different areas in sulfide ore heap based on nonlinear parameters was proposed and its reliability was verified by field test. The results indicate that temperature field evolution of the simulated ore heap presents significant spatial difference during self-heating process. Area with the maximum increasing extent of temperature in sulfide ore heap changes notably with the proceeding of self-heating reaction. Self-heating of sulfide ore heap is a chaotic evolution process, which means that it is feasible to evaluate spontaneous combustion tendency of different areas by nonlinear analysis method. There is a relatively strong correlation between the maximum Lyapunov exponent and spontaneous combustion tendency with the correlation coefficient of 0.9792. Furthermore, the sort of the maximum Lyapunov exponent is consistent with that of spontaneous combustion tendency. Therefore, spontaneous combustion tendency of different areas in sulfide ore heap can be evaluated by means of the maximum Lyapunov exponent method.展开更多
Three representative sulfide ore samples were collected from typical metal mines,and their corresponding pre-oxidized products were obtained under nature environment.The thermal behaviors of each sample at heating rat...Three representative sulfide ore samples were collected from typical metal mines,and their corresponding pre-oxidized products were obtained under nature environment.The thermal behaviors of each sample at heating rates of 5,10,15 and 20 °C/min in air flow from ambient temperature to 800 °C were studied by simultaneous thermal analysis and the TG/DSC curves before and after the pre-oxidation were compared.By the peak temperature of DTG curves,the whole reaction process for each sample was divided into different stages,and the apparent activation energies were calculated by the Ozawa-Flynn-Wall method.The results show that the reaction process of each sample after pre-oxidation is more complex,with quicker reaction rates,fewer heat production quantities,and higher or lower ignition-points.The apparent activation energies decrease from 364.017-474.228 kJ/mol to 244.523- 333.161 kJ/mol.Therefore,sulfide ores are more susceptible to spontaneous combustion after the pre-oxidation.展开更多
The coincidence of relevant factors, e.g. oxygen absorption quantity, weight increment, water soluble iron ions and sulfate ion of sulfide ore samples in the oxidation process, was tested through experiment. Based on ...The coincidence of relevant factors, e.g. oxygen absorption quantity, weight increment, water soluble iron ions and sulfate ion of sulfide ore samples in the oxidation process, was tested through experiment. Based on a large number of tests for a group sample of sulfide ores from a mine, some important conclusions were obtained. The results obtained by the investigation indicate that there is no general interpretation relative to the oxygen absorption and the formation products of sulfate ion and water soluble iron ions during the oxidation process of sulfide ores at ambient temperature. However, the weight increment of the sulfide ore samples in the oxidation process at ambient temperature has a linear relationship with the auantitv of oxvaen absorption.展开更多
A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines an...A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines and review of a great amount of relevant展开更多
硫化矿床开采中的炸药自爆现象是高硫矿山生产中可能遭遇的典型灾害之一,其严重影响着矿山的安全生产。基于Web of Science、中国知网等信息平台对硫化矿诱发炸药自爆的相关成果进行系统检索,围绕炸药自爆机理、炸药自爆模拟试验、炸药...硫化矿床开采中的炸药自爆现象是高硫矿山生产中可能遭遇的典型灾害之一,其严重影响着矿山的安全生产。基于Web of Science、中国知网等信息平台对硫化矿诱发炸药自爆的相关成果进行系统检索,围绕炸药自爆机理、炸药自爆模拟试验、炸药自爆危险性评价方法、炸药自爆防治技术等方面对国内外研究现状进行评价。最后,就硫化矿诱发炸药自爆的宏微观反应特性、多参数耦合作用机理、数学建模与数值分析、危险性判别准则、阻化干预等研究内容进行了展望。展开更多
基金Project (51074181) supported by the National Natural Science Foundation of ChinaProject (2010ssxt241) supported by Precious Dissertation Innovation Foundation of Central South University, China
文摘The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording thermometric instrument contrastively. The main factors, including emissivity, distance, angle and dust concentration that affect the temperature measurement precision, are analyzed. The regression equations about the individual factors and comprehensive factors are obtained by analyzing test data. The application of the regression equations improves the precision of the thermal infrared imager. The geometric information lost in traditional infrared thermometry is determined by visualization grid method and interpolation method, the relationship between the infrared imager and geometry information is established. The geometry location can be measured exactly.
基金Projects(51304238,51534008)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘To investigate the relationship between nonlinear parameters and spontaneous combustion tendency of sulfide ores, nine different sulfide ore samples were taken from a pyrite mine in China, and induced spontaneous combustion experiment was carried out in the laboratory. Different stages of the induced spontaneous combustion process were studied by integrating wavelet technology and nonlinear dynamics theory. The results show that ignition points of all the ore samples are above 330 ℃, indicating that sulfide ores of the pyrite mine are difficult to combust spontaneously under normal mining conditions. Spontaneous combustion process includes three stages: incubation stage, development stage and approaching stage. The average temperature rising rate of the three stages are 1.0 ~C/min, 2.0 ~C/min and 4.2 ~C/min, respectively. During the spontaneous combustion process, mean values of approximate entropy and correlation dimension increase at first, and then decrease in the following stage. The mean value of the maximum Lyapunov exponent increases with the passage of reaction time. In a whole, correlation among the three nonlinear parameters firstly weakens, then enhances, and the best correlation period is at approaching stage. As ignition point increases, the maximum Lyapunov exponent of approaching stage decreases. Therefore, combustible tendency of sulfide ores could be qualitatively evaluated based on the maximum Lyapunov exponent of this stage.
基金Project(2006BAK04B03) supported by the National Basic Research Program of ChinaProject(CX2009B053) supported by Innovation Foundation for Postgraduate Students of Hunan Province,ChinaProject(2009ybfz08) supported by the Doctoral Dissertation of Central South University,China
文摘in order to achieve a more efficient way to accurately detect the position of the fire source of spontaneous combustion underground mine, a simple fire source locating method, based on infrared scanning system which can determine the point where the highest temperature on the surface of igniting ores occurs, was proposed. First, the differential equations that describe heat flow in ore body were presented and the relationship between the surface temperature distribution and the depth and intensity of inner fire source was established with a relatively simple heat transfer model. With the solution of equation, the expression of the relationship between the surface temperature distribution and the inner fire source was deduced and the mathematical-physical model of heat transfer process was set up. Then, with the model, visualization of fire source on the basis of MATLAB simulation platform was realized. The results show that: 1) within 10 m, when the detecting depth is less than 2 m, the temperature perturbation on ores surface can change rapidly, and then slowly; after 4 m, in contrast, it changes very little, and is even close to zero at 10 m; 2) When it is close to self-ignition duration and the detective depths are 2, 5 and 10 m, respectively, the maximum temperature differences are correspondingly 0.5, 0.04 and 0.005 ℃ in the scope of 1 m×1 m; under the same condition, the maximum temperature differences are 1.391, 0.136 and 0.018 ℃, respectively, in the scope of 2 m×2 m. Therefore, this system can be used to measure the temperature differences on the surface of ore body and determine the highest temperature point directly. Also, it is possible to determine the depth of fire source and its intensity by locating method of fire source indirectly.
基金Projects(51304238,51534008)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘To explore a new evaluation method for spontaneous combustion tendency of different areas in sulfide ore heap, ore samples from a pyrite mine in China were taken as experimental materials, and the temperature variations of the measuring points of simulated ore heap were measured. Combined with wavelet transform and nonlinear parameters extraction, a new method for spontaneous combustion tendency of different areas in sulfide ore heap based on nonlinear parameters was proposed and its reliability was verified by field test. The results indicate that temperature field evolution of the simulated ore heap presents significant spatial difference during self-heating process. Area with the maximum increasing extent of temperature in sulfide ore heap changes notably with the proceeding of self-heating reaction. Self-heating of sulfide ore heap is a chaotic evolution process, which means that it is feasible to evaluate spontaneous combustion tendency of different areas by nonlinear analysis method. There is a relatively strong correlation between the maximum Lyapunov exponent and spontaneous combustion tendency with the correlation coefficient of 0.9792. Furthermore, the sort of the maximum Lyapunov exponent is consistent with that of spontaneous combustion tendency. Therefore, spontaneous combustion tendency of different areas in sulfide ore heap can be evaluated by means of the maximum Lyapunov exponent method.
基金Project(51304051)supported by the National Natural Science Foundation of ChinaProject(2012J05088)supported by the Natural Science Foundation of Fujian Province,China+1 种基金Project(022409)supported by School Talent Award of Fuzhou University,ChinaProject(2013-XQ-18)supported by Science&Technology Development Foundation of Fuzhou University,China
文摘Three representative sulfide ore samples were collected from typical metal mines,and their corresponding pre-oxidized products were obtained under nature environment.The thermal behaviors of each sample at heating rates of 5,10,15 and 20 °C/min in air flow from ambient temperature to 800 °C were studied by simultaneous thermal analysis and the TG/DSC curves before and after the pre-oxidation were compared.By the peak temperature of DTG curves,the whole reaction process for each sample was divided into different stages,and the apparent activation energies were calculated by the Ozawa-Flynn-Wall method.The results show that the reaction process of each sample after pre-oxidation is more complex,with quicker reaction rates,fewer heat production quantities,and higher or lower ignition-points.The apparent activation energies decrease from 364.017-474.228 kJ/mol to 244.523- 333.161 kJ/mol.Therefore,sulfide ores are more susceptible to spontaneous combustion after the pre-oxidation.
文摘The coincidence of relevant factors, e.g. oxygen absorption quantity, weight increment, water soluble iron ions and sulfate ion of sulfide ore samples in the oxidation process, was tested through experiment. Based on a large number of tests for a group sample of sulfide ores from a mine, some important conclusions were obtained. The results obtained by the investigation indicate that there is no general interpretation relative to the oxygen absorption and the formation products of sulfate ion and water soluble iron ions during the oxidation process of sulfide ores at ambient temperature. However, the weight increment of the sulfide ore samples in the oxidation process at ambient temperature has a linear relationship with the auantitv of oxvaen absorption.
文摘A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines and review of a great amount of relevant
文摘硫化矿床开采中的炸药自爆现象是高硫矿山生产中可能遭遇的典型灾害之一,其严重影响着矿山的安全生产。基于Web of Science、中国知网等信息平台对硫化矿诱发炸药自爆的相关成果进行系统检索,围绕炸药自爆机理、炸药自爆模拟试验、炸药自爆危险性评价方法、炸药自爆防治技术等方面对国内外研究现状进行评价。最后,就硫化矿诱发炸药自爆的宏微观反应特性、多参数耦合作用机理、数学建模与数值分析、危险性判别准则、阻化干预等研究内容进行了展望。